메뉴 건너뛰기




Volumn 94, Issue 10, 2008, Pages 3810-3823

Depolymerization-driven flow in nematode spermatozoa relates crawling speed to size and shape

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL; ANISOTROPY; ARTICLE; BIOLOGICAL MODEL; CAENORHABDITIS ELEGANS; CELL CULTURE; CELL SIZE; COMPUTER SIMULATION; CYTOLOGY; CYTOSKELETON; CYTOSOL; MALE; METHODOLOGY; MICROFLUIDICS; PHYSIOLOGY; SPERMATOZOON; SPERMATOZOON MOTILITY;

EID: 43849109486     PISSN: 00063495     EISSN: 15420086     Source Type: Journal    
DOI: 10.1529/biophysj.107.120980     Document Type: Article
Times cited : (31)

References (87)
  • 2
    • 0030045346 scopus 로고    scopus 로고
    • Cell migration: A physically integrated molecular process
    • Lauffenburger, D., and A. F. Horwitz. 1996. Cell migration: a physically integrated molecular process. Cell. 84:359-369.
    • (1996) Cell , vol.84 , pp. 359-369
    • Lauffenburger, D.1    Horwitz, A.F.2
  • 3
    • 0030049170 scopus 로고    scopus 로고
    • Actin based cell motility and cell locomotion
    • Mitchison, T. J., and L. P. Cramer. 1996. Actin based cell motility and cell locomotion. Cell. 84:371-379.
    • (1996) Cell , vol.84 , pp. 371-379
    • Mitchison, T.J.1    Cramer, L.P.2
  • 4
    • 3943052117 scopus 로고    scopus 로고
    • Crawling toward a unified model of cell motility: Spatial and temporal regulation of actin dynamics
    • Rafelski, S. M., and J. A. Theriot. 2004. Crawling toward a unified model of cell motility: spatial and temporal regulation of actin dynamics. Annu. Rev. Biochem. 73:209-239.
    • (2004) Annu. Rev. Biochem , vol.73 , pp. 209-239
    • Rafelski, S.M.1    Theriot, J.A.2
  • 6
    • 0842306339 scopus 로고    scopus 로고
    • A continuum model of motility in amoeboid cells
    • Gracheva, M. E., and H. G. Othmer. 2004. A continuum model of motility in amoeboid cells. Bull. Math. Biol. 66:167-193.
    • (2004) Bull. Math. Biol , vol.66 , pp. 167-193
    • Gracheva, M.E.1    Othmer, H.G.2
  • 7
    • 0242390532 scopus 로고    scopus 로고
    • Analysis of actin dynamics at the leading edge of crawling cells: Implications for the shape of keratocyte lamellipodia
    • Grimm, H. P., A. B. Verkhovsky, A. Mogilner, and J. J. Meister. 2003. Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia. Eur. Biophys. J. Biophys. Lett. 32:563-577.
    • (2003) Eur. Biophys. J. Biophys. Lett , vol.32 , pp. 563-577
    • Grimm, H.P.1    Verkhovsky, A.B.2    Mogilner, A.3    Meister, J.J.4
  • 9
    • 1942469424 scopus 로고    scopus 로고
    • Forces generated during actin-based propulsion: A direct measurement by micromanipulation
    • Marcy, Y., J. Prost, M. F. Carlier, and C. Sykes. 2004. Forces generated during actin-based propulsion: a direct measurement by micromanipulation. Proc. Natl. Acad. Sci. USA. 101:5992-5997.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 5992-5997
    • Marcy, Y.1    Prost, J.2    Carlier, M.F.3    Sykes, C.4
  • 10
    • 33748556828 scopus 로고    scopus 로고
    • Direct measurement of the lamellipodial protrusive force in a migrating cell
    • Prass, M., K. Jacobson, A. Mogilner, and M. Radmacher. 2006. Direct measurement of the lamellipodial protrusive force in a migrating cell. J. Cell Biol. 174:767-772.
    • (2006) J. Cell Biol , vol.174 , pp. 767-772
    • Prass, M.1    Jacobson, K.2    Mogilner, A.3    Radmacher, M.4
  • 11
    • 0030777766 scopus 로고    scopus 로고
    • Analysis of the actin-myosin II system in fish epidermal keratocytes: Mechanism of cell body translocation
    • Svitkina, T. M., A. B. Verkhovsky, K. M. McQuade, and G. G. Borisy. 1997. Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J. Cell Biol. 139:397-415.
    • (1997) J. Cell Biol , vol.139 , pp. 397-415
    • Svitkina, T.M.1    Verkhovsky, A.B.2    McQuade, K.M.3    Borisy, G.G.4
  • 12
    • 58649117858 scopus 로고    scopus 로고
    • Contraction of actin-myosin II dynamic network drives cell translocation
    • Verkhovsky, A. B., T. M. Svitkina, and G. G. Borisy. 1997. Contraction of actin-myosin II dynamic network drives cell translocation. Mol. Biol. Cell. 8:974.
    • (1997) Mol. Biol. Cell , vol.8 , pp. 974
    • Verkhovsky, A.B.1    Svitkina, T.M.2    Borisy, G.G.3
  • 13
    • 0023189474 scopus 로고
    • Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum
    • Knecht, D. A., and W. F. Loomis. 1987. Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science. 237:1081-1085.
    • (1987) Science , vol.237 , pp. 1081-1085
    • Knecht, D.A.1    Loomis, W.F.2
  • 14
    • 0141502119 scopus 로고    scopus 로고
    • Cross-linking of actin filaments by myosin II Is a major contributor to cortical integrity and cell motility in restrictive environments
    • Laevsky, G., and D. A. Knecht. 2003. Cross-linking of actin filaments by myosin II Is a major contributor to cortical integrity and cell motility in restrictive environments. J. Cell Sci. 116:3761-3770.
    • (2003) J. Cell Sci , vol.116 , pp. 3761-3770
    • Laevsky, G.1    Knecht, D.A.2
  • 15
    • 0035313171 scopus 로고    scopus 로고
    • During multicellular migration, myosin II serves a structural role independent of its motor function
    • Xu, X. X. S., E. Lee, T. L. Chen, E. Kuczmarski, R. L. Chishokn, and D. A. Knecht. 2001. During multicellular migration, myosin II serves a structural role independent of its motor function. Dev. Biol. 232:255-264.
    • (2001) Dev. Biol , vol.232 , pp. 255-264
    • Xu, X.X.S.1    Lee, E.2    Chen, T.L.3    Kuczmarski, E.4    Chishokn, R.L.5    Knecht, D.A.6
  • 17
    • 0025871812 scopus 로고
    • Modulation of contraction by gelation/solation in a reconstituted motile model
    • Janson, L. W., J. Kolega, and D. L. Taylor. 1991. Modulation of contraction by gelation/solation in a reconstituted motile model. J. Cell Biol. 114:1005-1015.
    • (1991) J. Cell Biol , vol.114 , pp. 1005-1015
    • Janson, L.W.1    Kolega, J.2    Taylor, D.L.3
  • 18
    • 0027487978 scopus 로고
    • In vitro models of tail contraction and cytoplasmic streaming in amoeboid cells
    • Janson, L. W., and D. L. Taylor. 1993. In vitro models of tail contraction and cytoplasmic streaming in amoeboid cells. J. Cell Biol. 123:345-356.
    • (1993) J. Cell Biol , vol.123 , pp. 345-356
    • Janson, L.W.1    Taylor, D.L.2
  • 20
    • 0030882387 scopus 로고    scopus 로고
    • Nematode sperm: Amoeboid movement without actin
    • Roberts, T. M., and M. Stewart. 1997. Nematode sperm: amoeboid movement without actin. Trends Cell Biol. 7:368-373.
    • (1997) Trends Cell Biol , vol.7 , pp. 368-373
    • Roberts, T.M.1    Stewart, M.2
  • 21
    • 0345306742 scopus 로고    scopus 로고
    • Retraction in amoeboid cell motility powered by cytoskeletal dynamics
    • Miao, L., O. Vanderlinde, M. Stewart, and T. M. Roberts. 2003. Retraction in amoeboid cell motility powered by cytoskeletal dynamics. Science. 302:1405-1407.
    • (2003) Science , vol.302 , pp. 1405-1407
    • Miao, L.1    Vanderlinde, O.2    Stewart, M.3    Roberts, T.M.4
  • 23
    • 33750701767 scopus 로고    scopus 로고
    • Reassembly of contractile actin cortex in cell blebs
    • Charras, G. T., C. K. Hu, M. Coughlin, and T. J. Mitchison. 2006. Reassembly of contractile actin cortex in cell blebs. J. Cell Biol. 175: 477-490.
    • (2006) J. Cell Biol , vol.175 , pp. 477-490
    • Charras, G.T.1    Hu, C.K.2    Coughlin, M.3    Mitchison, T.J.4
  • 24
    • 0029020632 scopus 로고
    • Actin polymerization and intracellular solvent flow in cell-surface blebbing
    • Cunningham, C. C. 1995. Actin polymerization and intracellular solvent flow in cell-surface blebbing. J. Cell Biol. 129:1589-1599.
    • (1995) J. Cell Biol , vol.129 , pp. 1589-1599
    • Cunningham, C.C.1
  • 25
    • 0036837855 scopus 로고    scopus 로고
    • Localized depletion of polymerized actin at the front of Walker carcinosarcoma cells increases the speed of locomotion
    • Keller, H., A. D. Zadeh, and P. Eggli. 2002. Localized depletion of polymerized actin at the front of Walker carcinosarcoma cells increases the speed of locomotion. Cell Motil. Cytoskeleton. 53:189-202.
    • (2002) Cell Motil. Cytoskeleton , vol.53 , pp. 189-202
    • Keller, H.1    Zadeh, A.D.2    Eggli, P.3
  • 27
    • 0020058158 scopus 로고
    • Caenorhabditis elegans spermatozoan locomotion: Amoeboid movement with almost no actin
    • Nelson, G., T. Roberts, and S. Ward. 1982. Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin. J. Cell Biol. 92:121-131.
    • (1982) J. Cell Biol , vol.92 , pp. 121-131
    • Nelson, G.1    Roberts, T.2    Ward, S.3
  • 28
    • 0030986565 scopus 로고    scopus 로고
    • Quantitative analysis of Caenorhabditis elegans sperm motility and how it is affected by mutants Spe11 and Unc54
    • Royal, D. C., M. A. Royal, D. Wessels, S. Lhernault, and D. R. Soll. 1997. Quantitative analysis of Caenorhabditis elegans sperm motility and how it is affected by mutants Spe11 and Unc54. Cell Motil. Cytoskeleton. 37:98-110.
    • (1997) Cell Motil. Cytoskeleton , vol.37 , pp. 98-110
    • Royal, D.C.1    Royal, M.A.2    Wessels, D.3    Lhernault, S.4    Soll, D.R.5
  • 30
    • 0037277314 scopus 로고    scopus 로고
    • A simple 1-D model for the crawling nematode sperm cell
    • Mogliner, A., and D. W. Verzi. 2003. A simple 1-D model for the crawling nematode sperm cell. J. Stat. Phys. 110:1169-1189.
    • (2003) J. Stat. Phys , vol.110 , pp. 1169-1189
    • Mogliner, A.1    Verzi, D.W.2
  • 31
    • 3342984201 scopus 로고    scopus 로고
    • The hydration dynamics of polyelectrolyte gels with applications to drug delivery and cell motility
    • Wolgemuth, C., A. Mogilner, and G. Oster. 2004. The hydration dynamics of polyelectrolyte gels with applications to drug delivery and cell motility. Eur. Biophys. J. 33:146-158.
    • (2004) Eur. Biophys. J , vol.33 , pp. 146-158
    • Wolgemuth, C.1    Mogilner, A.2    Oster, G.3
  • 32
    • 0032558704 scopus 로고    scopus 로고
    • Larger sperm outcompete smaller sperm in the nematode Caenorhabditis elegans
    • Lamunyon, C. W., and S. Ward. 1998. Larger sperm outcompete smaller sperm in the nematode Caenorhabditis elegans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265:1997-2002.
    • (1998) Proc. R. Soc. Lond. Ser. B Biol. Sci , vol.265 , pp. 1997-2002
    • Lamunyon, C.W.1    Ward, S.2
  • 33
    • 0020789356 scopus 로고    scopus 로고
    • Ward,S.,E.Hogan,andG.A.Nelson.1983.The initiation of spermatogenesis in the nematode Caenorhabditis elegans. Dev. Biol. 98:70-79.
    • Ward,S.,E.Hogan,andG.A.Nelson.1983.The initiation of spermatogenesis in the nematode Caenorhabditis elegans. Dev. Biol. 98:70-79.
  • 35
    • 0018905019 scopus 로고
    • Vesicle fusion, pseudopod extension and amoeboid motility are induced in nematode spermatids by the ionophore monensin
    • Nelson, G. A., and S. Ward. 1980. Vesicle fusion, pseudopod extension and amoeboid motility are induced in nematode spermatids by the ionophore monensin. Cell. 19:457-464.
    • (1980) Cell , vol.19 , pp. 457-464
    • Nelson, G.A.1    Ward, S.2
  • 36
    • 0026536755 scopus 로고
    • Confocal differential interference contrast (DIC) microscopy: Including a theoretical analysis of conventional and confocal DIC imaging
    • Cogswell, C. J., and C. J. R. Sheppard. 1991. Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging. J. Microsc. 165:81-101.
    • (1991) J. Microsc , vol.165 , pp. 81-101
    • Cogswell, C.J.1    Sheppard, C.J.R.2
  • 37
    • 0037283970 scopus 로고    scopus 로고
    • Measurements of cell-generated deformations on flexible substrata using correlation - based optical flow
    • Marganski, W. A., M. Dembo, and Y.-L. Wang. 2003. Measurements of cell-generated deformations on flexible substrata using correlation - based optical flow. Methods Enzymol. 361:197-211.
    • (2003) Methods Enzymol , vol.361 , pp. 197-211
    • Marganski, W.A.1    Dembo, M.2    Wang, Y.-L.3
  • 38
    • 0022471946 scopus 로고
    • Membrane and cytoplasmic proteins are transported in the same organelle complex during nematode spermatogenesis
    • Roberts, T. M., F. M. Pavalko, and S. Ward. 1986. Membrane and cytoplasmic proteins are transported in the same organelle complex during nematode spermatogenesis. J. Cell Biol. 102:1787-1796.
    • (1986) J. Cell Biol , vol.102 , pp. 1787-1796
    • Roberts, T.M.1    Pavalko, F.M.2    Ward, S.3
  • 41
    • 0344443654 scopus 로고    scopus 로고
    • Dissection of the Ascaris sperm motility machinery identifies key proteins involved in Major Sperm Protein-based amoeboid locomotion
    • Buttery, S. M., G. C. Ekman, M. Seavy, M. Stewart, and T. M. Roberts. 2003. Dissection of the Ascaris sperm motility machinery identifies key proteins involved in Major Sperm Protein-based amoeboid locomotion. Mol. Biol. Cell. 14:5082-5088.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 5082-5088
    • Buttery, S.M.1    Ekman, G.C.2    Seavy, M.3    Stewart, M.4    Roberts, T.M.5
  • 42
    • 0030053327 scopus 로고    scopus 로고
    • Reconstruction in vitro of the motile apparatus from the amoeboid sperm of Ascaris shows that filament assembly and bundling move membranes
    • Italiano, J., Jr., T. M. Roberts, M. Stewart, and C. A. Fontana. 1996. Reconstruction in vitro of the motile apparatus from the amoeboid sperm of Ascaris shows that filament assembly and bundling move membranes. Cell. 84:105-114.
    • (1996) Cell , vol.84 , pp. 105-114
    • Italiano Jr., J.1    Roberts, T.M.2    Stewart, M.3    Fontana, C.A.4
  • 43
    • 0028005419 scopus 로고
    • Supramolecular assemblies of the Ascaris suum Major Sperm Protein (MSP) associated with amoeboid cell motility
    • King, K. L., M. Stewart, and T. M. Roberts. 1994. Supramolecular assemblies of the Ascaris suum Major Sperm Protein (MSP) associated with amoeboid cell motility. J. Cell Sci. 107:2941-2949.
    • (1994) J. Cell Sci , vol.107 , pp. 2941-2949
    • King, K.L.1    Stewart, M.2    Roberts, T.M.3
  • 44
    • 0036019222 scopus 로고    scopus 로고
    • 2.6 Angstrom resolution crystal structure of helices of the motile Major Sperm Protein (MSP) of Caenorhabditis elegans
    • Baker, A. M. E., T. M. Roberts, and M. Stewart. 2002. 2.6 Angstrom resolution crystal structure of helices of the motile Major Sperm Protein (MSP) of Caenorhabditis elegans. J. Mol. Biol. 319:491-499.
    • (2002) J. Mol. Biol , vol.319 , pp. 491-499
    • Baker, A.M.E.1    Roberts, T.M.2    Stewart, M.3
  • 45
    • 0024572604 scopus 로고
    • A unique cytoskeleton associated with crawling in the amoeboid sperm of the nematode Ascaris suum
    • Sepsenwol, S., H. Ris, and T. M. Roberts. 1989. A unique cytoskeleton associated with crawling in the amoeboid sperm of the nematode Ascaris suum. J. Cell Biol. 108:55-56.
    • (1989) J. Cell Biol , vol.108 , pp. 55-56
    • Sepsenwol, S.1    Ris, H.2    Roberts, T.M.3
  • 46
    • 0034599633 scopus 로고    scopus 로고
    • Acting like actin: The dynamics of the nematode Major Sperm Protein (MSP) cytoskeleton indicate a push-pull mechanism for amoeboid cell motility
    • Roberts, T. M., and M. Stewart. 2000. Acting like actin: the dynamics of the nematode Major Sperm Protein (MSP) cytoskeleton indicate a push-pull mechanism for amoeboid cell motility. J. Cell Biol. 149: 7-12.
    • (2000) J. Cell Biol , vol.149 , pp. 7-12
    • Roberts, T.M.1    Stewart, M.2
  • 47
    • 0032567683 scopus 로고    scopus 로고
    • Hydrostatic pressure shows that lamellipodial motility in Ascaris sperm requires membrane-associated Major Sperm Protein filament nucleation and elongation
    • Roberts, T. M., E. D. Salmon, and M. Stewart. 1998. Hydrostatic pressure shows that lamellipodial motility in Ascaris sperm requires membrane-associated Major Sperm Protein filament nucleation and elongation. J. Cell Biol. 140:367-375.
    • (1998) J. Cell Biol , vol.140 , pp. 367-375
    • Roberts, T.M.1    Salmon, E.D.2    Stewart, M.3
  • 48
    • 0032843103 scopus 로고    scopus 로고
    • Localized depolymerization of the Major Sperm Protein cytoskeleton correlates with the forward movement of the cell body in the amoeboid movement of nematode sperm
    • Italiano, J. E., M. Stewart, and T. M. Roberts. 1999. Localized depolymerization of the Major Sperm Protein cytoskeleton correlates with the forward movement of the cell body in the amoeboid movement of nematode sperm. J. Cell Biol. 146:1087-1095.
    • (1999) J. Cell Biol , vol.146 , pp. 1087-1095
    • Italiano, J.E.1    Stewart, M.2    Roberts, T.M.3
  • 49
    • 0038445625 scopus 로고    scopus 로고
    • A 48 KDa integral membrane phosphoprotein orchestrates the cytoskeletal dynamics that generate amoeboid cell motility in Ascaris sperm
    • Leclaire, L. L., M. Stewart, and T. M. Roberts. 2003. A 48 KDa integral membrane phosphoprotein orchestrates the cytoskeletal dynamics that generate amoeboid cell motility in Ascaris sperm. J. Cell Sci. 116:2655-2663.
    • (2003) J. Cell Sci , vol.116 , pp. 2655-2663
    • Leclaire, L.L.1    Stewart, M.2    Roberts, T.M.3
  • 50
    • 0024358522 scopus 로고
    • Apparent viscosity and cortical tension of blood granulocytes determined by micropipette aspiration
    • Evans, E., and A. Yeung. 1989. Apparent viscosity and cortical tension of blood granulocytes determined by micropipette aspiration. Biophys. J. 56:151-160.
    • (1989) Biophys. J , vol.56 , pp. 151-160
    • Evans, E.1    Yeung, A.2
  • 51
    • 0038636530 scopus 로고    scopus 로고
    • The mechanics of neutrophils: Synthetic modeling of three experiments
    • Herant, M., W. A. Marganski, and M. Dembo. 2003. The mechanics of neutrophils: synthetic modeling of three experiments. Biophys. J. 84: 3389-3413.
    • (2003) Biophys. J , vol.84 , pp. 3389-3413
    • Herant, M.1    Marganski, W.A.2    Dembo, M.3
  • 52
    • 15644366485 scopus 로고    scopus 로고
    • The secretion-coupled endocytosis correlates with membrane tension changes in Rbl 2H3 cells
    • Dai, J. W., H. P. Tingbeall, and M. P. Sheetz. 1997. The secretion-coupled endocytosis correlates with membrane tension changes in Rbl 2H3 cells. J. Gen. Physiol. 110:1-10.
    • (1997) J. Gen. Physiol , vol.110 , pp. 1-10
    • Dai, J.W.1    Tingbeall, H.P.2    Sheetz, M.P.3
  • 53
    • 0642284004 scopus 로고    scopus 로고
    • Shrinking gels pull cells
    • Mogilner, A., and G. Oster. 2003. Shrinking gels pull cells. Science. 302:1340-1341.
    • (2003) Science , vol.302 , pp. 1340-1341
    • Mogilner, A.1    Oster, G.2
  • 54
    • 12044255391 scopus 로고
    • Volume phase transition and related phenomena of polymer gels
    • Shibayama, M., and T. Tanaka. 1993. Volume phase transition and related phenomena of polymer gels. Adv. Polymer Sci. 109:1-62.
    • (1993) Adv. Polymer Sci , vol.109 , pp. 1-62
    • Shibayama, M.1    Tanaka, T.2
  • 55
    • 0030601552 scopus 로고    scopus 로고
    • 2.5 Angstrom resolution crystal structure of the motile Major Sperm Protein (MSP) of Ascaris suum
    • Bullock, T. L., T. M. Roberts, and M. Stewart. 1996. 2.5 Angstrom resolution crystal structure of the motile Major Sperm Protein (MSP) of Ascaris suum. J. Mol. Biol. 263:284-296.
    • (1996) J. Mol. Biol , vol.263 , pp. 284-296
    • Bullock, T.L.1    Roberts, T.M.2    Stewart, M.3
  • 56
    • 85031359873 scopus 로고    scopus 로고
    • Reference deleted in proof
    • Reference deleted in proof.
  • 57
    • 0037774384 scopus 로고
    • Friction coefficient of polymer networks of gels
    • Tokita, T., and T. Tanaka. 1991. Friction coefficient of polymer networks of gels. J. Chem. Phys. 95:4613.
    • (1991) J. Chem. Phys , vol.95 , pp. 4613
    • Tokita, T.1    Tanaka, T.2
  • 58
    • 0025620222 scopus 로고    scopus 로고
    • p) of the cell membrane of cultured glioma cells (C6). Acta Neurochir. Suppl. (Wien). 51: 11-13.
    • p) of the cell membrane of cultured glioma cells (C6). Acta Neurochir. Suppl. (Wien). 51: 11-13.
  • 59
    • 19944372784 scopus 로고    scopus 로고
    • A study of porous structure of cellular membranes in human erythrocytes
    • Kargol, A., M. Przestalski, and M. Kargol. 2005. A study of porous structure of cellular membranes in human erythrocytes. Cryobiology. 50:332-337.
    • (2005) Cryobiology , vol.50 , pp. 332-337
    • Kargol, A.1    Przestalski, M.2    Kargol, M.3
  • 60
    • 0014244850 scopus 로고
    • Filtration coefficient of the axon membrane as measured with hydrostatic and osmotic methods
    • Vargas, F. 1968. Filtration coefficient of the axon membrane as measured with hydrostatic and osmotic methods. J. Gen. Physiol. 51:13-27.
    • (1968) J. Gen. Physiol , vol.51 , pp. 13-27
    • Vargas, F.1
  • 62
    • 12844279136 scopus 로고    scopus 로고
    • 2+-dependent regulation of cell adhesiveness
    • 2+-dependent regulation of cell adhesiveness. J. Cell Sci. 118:369-379.
    • (2005) J. Cell Sci , vol.118 , pp. 369-379
    • Doyle, A.D.1    Lee, J.2
  • 63
    • 0033895234 scopus 로고    scopus 로고
    • Molecular mechanisms controlling actin filament dynamics in nonmuscle cells
    • Pollard, T. D., L. Blanchoin, and R. D. Mullins. 2000. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29:545-576.
    • (2000) Annu. Rev. Biophys. Biomol. Struct , vol.29 , pp. 545-576
    • Pollard, T.D.1    Blanchoin, L.2    Mullins, R.D.3
  • 64
    • 0025740949 scopus 로고
    • Actin microfilament dynamics in locomoting cells
    • Theriot, J. A., and T. J. Mitchison. 1991. Actin microfilament dynamics in locomoting cells. Nature. 352:126-131.
    • (1991) Nature , vol.352 , pp. 126-131
    • Theriot, J.A.1    Mitchison, T.J.2
  • 65
    • 0037039770 scopus 로고    scopus 로고
    • Single-molecule speckle analysis of actin filament turnover in lamellipodia
    • Watanabe, N., and T. J. Mitchison. 2002. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science. 295:1083-1086.
    • (2002) Science , vol.295 , pp. 1083-1086
    • Watanabe, N.1    Mitchison, T.J.2
  • 66
    • 0036708436 scopus 로고    scopus 로고
    • Regulation of actin dynamics in rapidly moving cells: A quantitative analysis
    • Mogilner, A., and L. Edelstein-Keshet. 2002. Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J. 83:1237-1258.
    • (2002) Biophys. J , vol.83 , pp. 1237-1258
    • Mogilner, A.1    Edelstein-Keshet, L.2
  • 67
    • 33845700946 scopus 로고    scopus 로고
    • Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: Evidence of frequent filament severing
    • Miyoshi, T., T. Tsuji, C. Higashida, M. Hertzog, A. Fujita, S. Narumiya, G. Scita, and N. Watanabe. 2006. Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing. J. Cell Biol. 175:947-955.
    • (2006) J. Cell Biol , vol.175 , pp. 947-955
    • Miyoshi, T.1    Tsuji, T.2    Higashida, C.3    Hertzog, M.4    Fujita, A.5    Narumiya, S.6    Scita, G.7    Watanabe, N.8
  • 68
    • 0035947404 scopus 로고    scopus 로고
    • Cell biology-mechanism of actin-based motility
    • Pantaloni, D. C. la Leinche, and M. F. Carlier. 2001. Cell biology-mechanism of actin-based motility. Science. 292:1502-1506.
    • (2001) Science , vol.292 , pp. 1502-1506
    • Pantaloni, D.1    la Leinche, C.2    Carlier, M.F.3
  • 69
    • 14044270846 scopus 로고    scopus 로고
    • du Roure, A., O. and Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Siberzan, and B. Ladoux. 2005. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. USA. 102:2390-2395.
    • du Roure, A., O. and Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Siberzan, and B. Ladoux. 2005. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. USA. 102:2390-2395.
  • 70
    • 12844281654 scopus 로고    scopus 로고
    • Slipping or gripping? Fluorescent speckle microscopy in fish keratocytes reveals two different mechanisms for generating a retrograde flow of actin
    • Jurado, C., J. R. Haserick, and J. Lee. 2005. Slipping or gripping? Fluorescent speckle microscopy in fish keratocytes reveals two different mechanisms for generating a retrograde flow of actin. Mol. Biol. Cell. 16:507-518.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 507-518
    • Jurado, C.1    Haserick, J.R.2    Lee, J.3
  • 71
    • 0032693032 scopus 로고    scopus 로고
    • Keratocytes generate traction forces in two phases
    • Burton, K., and J. Park. 1999. Keratocytes generate traction forces in two phases. Mol. Biol. Cell. 10:3745-3769.
    • (1999) Mol. Biol. Cell , vol.10 , pp. 3745-3769
    • Burton, K.1    Park, J.2
  • 72
    • 24644441368 scopus 로고    scopus 로고
    • The comings and goings of actin: Coupling protrusion and retraction in cell motility
    • Small, J. V., and G. P. Resch. 2005. The comings and goings of actin: coupling protrusion and retraction in cell motility. Curr. Opin. Cell Biol. 17:517-523.
    • (2005) Curr. Opin. Cell Biol , vol.17 , pp. 517-523
    • Small, J.V.1    Resch, G.P.2
  • 74
    • 24944458933 scopus 로고    scopus 로고
    • Mechanics of crawling cells
    • Bereiter-Hahn, J. 2005. Mechanics of crawling cells. Med. Eng. Phys. 27:743-753.
    • (2005) Med. Eng. Phys , vol.27 , pp. 743-753
    • Bereiter-Hahn, J.1
  • 75
    • 0037007613 scopus 로고    scopus 로고
    • Brownian ratchets: Darwin's motors
    • Oster, G. 2002. Brownian ratchets: Darwin's motors. Nature. 417:25.
    • (2002) Nature , vol.417 , pp. 25
    • Oster, G.1
  • 77
    • 0038681878 scopus 로고    scopus 로고
    • Motion of an adhesive gel in a swelling gradient: A mechanism for cell locomotion
    • Joanny, J.-F., F. Jülicher, and J. Prost. 2003. Motion of an adhesive gel in a swelling gradient: a mechanism for cell locomotion. Phys. Rev. Lett. 90:168102.
    • (2003) Phys. Rev. Lett , vol.90 , pp. 168102
    • Joanny, J.-F.1    Jülicher, F.2    Prost, J.3
  • 79
    • 21844458415 scopus 로고    scopus 로고
    • Multiscale two-dimensional modeling of a motile simple-shaped cell
    • Rubinstein, B., K. Jacobson, and A. Mogilner. 2005. Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model. Simul. 3:413-439.
    • (2005) Multiscale Model. Simul , vol.3 , pp. 413-439
    • Rubinstein, B.1    Jacobson, K.2    Mogilner, A.3
  • 80
    • 0028353858 scopus 로고
    • Regulation of the Ascaris Major Sperm Protein (MSP) cytoskeleton by intracellular pH
    • King, K. L., J. Essig, T. M. Roberts, and T. S. Moerland. 1994. Regulation of the Ascaris Major Sperm Protein (MSP) cytoskeleton by intracellular pH. Cell Motil. Cytoskeleton. 27:193-205.
    • (1994) Cell Motil. Cytoskeleton , vol.27 , pp. 193-205
    • King, K.L.1    Essig, J.2    Roberts, T.M.3    Moerland, T.S.4
  • 81
    • 0015124675 scopus 로고
    • Averaged equations for two phase flow
    • Drew, D. A., and L. A. Segel. 1971. Averaged equations for two phase flow. Stud. Appl. Math. 50:205-231.
    • (1971) Stud. Appl. Math , vol.50 , pp. 205-231
    • Drew, D.A.1    Segel, L.A.2
  • 82
    • 0022510406 scopus 로고
    • Cell motion, contractile networks, and the physics of interpenetrating reactive flow
    • Dembo, M., and F. Harlow. 1986. Cell motion, contractile networks, and the physics of interpenetrating reactive flow. Biophys. J. 50:109-121.
    • (1986) Biophys. J , vol.50 , pp. 109-121
    • Dembo, M.1    Harlow, F.2
  • 84
    • 33748457432 scopus 로고
    • Kinetics of swelling of gels
    • Tanaka, T., and D. Fillmore. 1979. Kinetics of swelling of gels. J. Chem. Phys. 70:1214-1218.
    • (1979) J. Chem. Phys , vol.70 , pp. 1214-1218
    • Tanaka, T.1    Fillmore, D.2
  • 85
    • 3042841518 scopus 로고    scopus 로고
    • Level Set Methods and Dynamic Implicit Surfaces
    • Springer-Verlag, New York
    • Osher, S., and R. Fedkiw. 2000. Level Set Methods and Dynamic Implicit Surfaces. Vol. 153, Applied Mathematical Sciences Series. Springer-Verlag, New York.
    • (2000) Applied Mathematical Sciences Series , vol.153
    • Osher, S.1    Fedkiw, R.2
  • 87
    • 0347057016 scopus 로고    scopus 로고
    • Analysis of nonlinear dynamics on arbitrary geometries with the virtual cell
    • Schaff, J. C., B. M. Slepchenko, Y.-S. Choi, J. Wagner, D. Resasco, and L. M. Loew. 2001. Analysis of nonlinear dynamics on arbitrary geometries with the virtual cell. Chaos. 11:115-131.
    • (2001) Chaos , vol.11 , pp. 115-131
    • Schaff, J.C.1    Slepchenko, B.M.2    Choi, Y.-S.3    Wagner, J.4    Resasco, D.5    Loew, L.M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.