-
1
-
-
0002370418
-
A tutorial on learning with Bayesian networks
-
Jordan MI (ed) MIT Press, Cambridgee
-
Heckerman D (1998) A tutorial on learning with Bayesian networks. In: Jordan MI (ed) Learning in graphical models, pp 301-354. MIT Press, Cambridgee
-
(1998)
Learning in Graphical Models
, pp. 301-354
-
-
Heckerman, D.1
-
2
-
-
33746898101
-
Introduction to learning Bayesian networks from data
-
Husmeier D, Dybowski R, Roberts S (eds) Springer, Berlin
-
Husmeier D (2005) Introduction to learning Bayesian networks from data. In: Husmeier D, Dybowski R, Roberts S (eds) Probabilistic modeling in bioinformatics and medical informatics. Springer, Berlin, pp 17-577
-
(2005)
Probabilistic Modeling in Bioinformatics and Medical Informatics
, pp. 17-577
-
-
Husmeier, D.1
-
3
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper G, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9:309-3477
-
(1992)
Mach Learn
, vol.9
, pp. 309-3477
-
-
Cooper, G.1
Herskovits, E.2
-
7
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman D, Geiger D, Chickering D (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20:197-2433
-
(1995)
Mach Learn
, vol.20
, pp. 197-2433
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
10
-
-
21844520724
-
Bayesian graphical models for discrete data
-
Madigan D, York J (1995) Bayesian graphical models for discrete data. Int Stat Rev 63:215-2322
-
(1995)
Int Stat Rev
, vol.63
, pp. 215-2322
-
-
Madigan, D.1
York, J.2
-
11
-
-
2542465947
-
On inclusion-driven learning of Bayesian networks
-
Castelo R, Kočka T (2003) On inclusion-driven learning of Bayesian networks. J Mach Learn Res 4:527-5744
-
(2003)
J Mach Learn Res
, vol.4
, pp. 527-5744
-
-
Castelo, R.1
Kočka, T.2
-
12
-
-
43049097125
-
Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move
-
GrzegorczykM, Husmeier D (2008) Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move. Mach Learn 71:265-3055
-
(2008)
Mach Learn
, vol.71
, pp. 265-3055
-
-
Grzegorczykm Husmeier, D.1
-
13
-
-
0037262841
-
Being Bayesian about network structure. A bayesian approach to structure discovery in Bayesian networks
-
Friedman N, Koller D (2003) Being Bayesian about network structure. A bayesian approach to structure discovery in Bayesian networks. Mach Learn 50:95-1255
-
(2003)
Mach Learn
, vol.50
, pp. 95-1255
-
-
Friedman, N.1
Koller, D.2
-
14
-
-
31844439894
-
Exact Bayesian structure discovery in Bayesian networks
-
Kovisto M, Sood K (2004) Exact Bayesian structure discovery in Bayesian networks. J Mach Learn Res 5:549-5733
-
(2004)
J Mach Learn Res
, vol.5
, pp. 549-5733
-
-
Kovisto, M.1
Sood, K.2
-
17
-
-
43049129993
-
Learning the structure of dynamic Bayesian networks from time series and steady state measurements
-
L€ahdesm€aki H, Shmulevich I (2008) Learning the structure of dynamic Bayesian networks from time series and steady state measurements. Mach Learn 71:185-2177
-
(2008)
Mach Learn
, vol.71
, pp. 185-2177
-
-
Lahdesmaki, H.1
Shmulevich, I.2
-
18
-
-
10244230983
-
Reconstruction of gene networks using Bayesian learning and manipulation experiments
-
Pournara I, Wernisch L (2004) Reconstruction of gene networks using Bayesian learning and manipulation experiments. Bioinformatics 20 (17):2934-29422
-
(2004)
Bioinformatics
, vol.20
, Issue.17
, pp. 2934-29422
-
-
Pournara, I.1
Wernisch, L.2
-
20
-
-
84880880273
-
Active learning for structure in Bayesian networks
-
Seattle, WA, USA
-
Tong S, Koller D (2001) Active learning for structure in Bayesian networks. Proceedings of the seventeenth international joint conference on artifcial intelligence, Seattle, WA, USA, pp 863-8699
-
(2001)
Proceedings of the Seventeenth International Joint Conference on Artifcial Intelligence
, pp. 863-8699
-
-
Tong, S.1
Koller, D.2
-
21
-
-
17644427718
-
Protein-signaling networks derived from multiparameter single-cell data
-
Sachs K, Perez O, Peer DA, Lauffenburger DA, Nolan GP (2005) Protein-signaling networks derived from multiparameter single-cell data. Science 308:523-5299
-
(2005)
Science
, vol.308
, pp. 523-5299
-
-
Sachs, K.1
Perez, O.2
Peer, D.A.3
Lauffenburger, D.A.4
Nolan, G.P.5
-
22
-
-
84871893558
-
-
Bayes Net Toolbox for Matlab Cited 31 Dec 20100
-
Bayes Net Toolbox for Matlab. http://code. google.com/p/bnt/Cited 31 Dec 20100
-
-
-
-
24
-
-
15944361900
-
Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
-
Bernard A, Hartemink A (2005) Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. Pacific symposium on biocomputing 2005 (PSB05), pp 459-4700
-
(2005)
Pacific Symposium on Biocomputing 2005 (PSB05)
, pp. 459-4700
-
-
Bernard, A.1
Hartemink, A.2
|