-
1
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B, Kroemer G. 2008. Autophagy in the pathogenesis of disease. Cell 132:27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
2
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Mishima K, Saito I, Okano H, Mizushima N. 2006.Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885-889.
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
Suzuki-Migishima, R.6
Mishima, K.7
Saito, I.8
Okano, H.9
Mizushima, N.10
-
3
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880-884.
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
Tanida, I.6
Ueno, T.7
Koike, M.8
Uchiyama, Y.9
Kominami, E.10
Tanaka, K.11
-
4
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagydeficient mice
-
Komatsu M, Waguri S, Koike M, Sou Y, Ueno T, Hara T, Mizushima N, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K. 2007. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagydeficient mice. Cell 131:1149-1163.
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
Waguri, S.2
Koike, M.3
Sou, Y.4
Ueno, T.5
Hara, T.6
Mizushima, N.7
Ezaki, J.8
Murata, S.9
Hamazaki, J.10
Nishito, Y.11
Iemura, S.12
Yanagawa, T.13
Uwayama, J.14
Warabi, E.15
Yoshida, H.16
Ishii, T.17
Kobayashi, A.18
Yamamoto, M.19
Yue, Z.20
Uchiyama, Y.21
Kominami, E.22
Tanaka, K.23
more..
-
5
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K. 2007. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13:619-624.
-
(2007)
Nat. Med.
, vol.13
, pp. 619-624
-
-
Nakai, A.1
Yamaguchi, O.2
Takeda, T.3
Higuchi, Y.4
Hikoso, S.5
Taniike, M.6
Omiya, S.7
Matsumura, Y.8
Asahi, M.9
Nishida, K.10
Hori, M.11
Mizushima, N.12
Otsu, K.13
-
6
-
-
52749093177
-
Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
-
Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H. 2008. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8:325-332.
-
(2008)
Cell Metab.
, vol.8
, pp. 325-332
-
-
Ebato, C.1
Uchida, T.2
Arakawa, M.3
Komatsu, M.4
Ueno, T.5
Komiya, K.6
Azuma, K.7
Hirose, T.8
Tanaka, K.9
Kominami, E.10
Kawamori, R.11
Fujitani, Y.12
Watada, H.13
-
7
-
-
52749094770
-
Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia
-
Jung HS, Chung KW, Won KJ, Kim J, Komatsu M, Tanaka K, Nguyen YH, Yoon K-H, Kim J-W, Jeong YT, Han MS, Lee M-K, Kim K-W, Lee M-S. 2008. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 8:318-324.
-
(2008)
Cell Metab.
, vol.8
, pp. 318-324
-
-
Jung, H.S.1
Chung, K.W.2
Won, K.J.3
Kim, J.4
Komatsu, M.5
Tanaka, K.6
Nguyen, Y.H.7
Yoon, K.-H.8
Kim, J.-W.9
Jeong, Y.T.10
Han, M.S.11
Lee, M.-K.12
Kim, K.-W.13
Lee, M.-S.14
-
8
-
-
57049094929
-
Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease
-
Raben N, Hill V, Shea L, Takikita S, Baum R, Mizushima N, Ralston E.2008. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet. 17:3897-3908.
-
(2008)
Hum. Mol. Genet
, vol.17
, pp. 3897-3908
-
-
Raben, N.1
Hill, V.2
Shea, L.3
Takikita, S.4
Baum, R.5
Mizushima, N.6
Ralston, E.7
-
9
-
-
70449927247
-
Autophagy is required to maintain muscle mass
-
Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Schiaffino S, Sandri M. 2009. Autophagy is required to maintain muscle mass. Cell Metab. 10:507-515.
-
(2009)
Cell Metab.
, vol.10
, pp. 507-515
-
-
Masiero, E.1
Agatea, L.2
Mammucari, C.3
Blaauw, B.4
Loro, E.5
Komatsu, M.6
Metzger, D.7
Schiaffino, S.8
Sandri, M.9
-
10
-
-
70349919804
-
Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes
-
Simonsen A, Tooze SA. 2009. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J. Cell Biol. 186:773-782.
-
(2009)
J. Cell Biol.
, vol.186
, pp. 773-782
-
-
Simonsen, A.1
Tooze, S.A.2
-
11
-
-
78149475088
-
Regulation of mammalian autophagy in physiology and pathophysiology
-
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC. 2010.Regulation of mammalian autophagy in physiology and pathophysiology.Physiol. Rev. 90:1383-1435.
-
(2010)
Physiol. Rev.
, vol.90
, pp. 1383-1435
-
-
Ravikumar, B.1
Sarkar, S.2
Davies, J.E.3
Futter, M.4
Garcia-Arencibia, M.5
Green-Thompson, Z.W.6
Jimenez-Sanchez, M.7
Korolchuk, V.I.8
Lichtenberg, M.9
Luo, S.10
Massey, D.C.11
Menzies, F.M.12
Moreau, K.13
Narayanan, U.14
Renna, M.15
Siddiqi, F.H.16
Underwood, B.R.17
Winslow, A.R.18
Rubinsztein, D.C.19
-
12
-
-
65249119430
-
Nutrient-dependent mTORCl association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S-I, Takehana K, Yamada N, Guan J-L, Oshiro N, Mizushima N. 2009. Nutrient-dependent mTORCl association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20:1981-1991.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.-I.7
Takehana, K.8
Yamada, N.9
Guan, J.-L.10
Oshiro, N.11
Mizushima, N.12
-
13
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung CH, Jun CB, Ro S-H, Kim Y-M, Otto NM, Cao J, Kundu M, Kim D-H. 2009. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20:1992-2003.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.-H.3
Kim, Y.-M.4
Otto, N.M.5
Cao, J.6
Kundu, M.7
Kim, D.-H.8
-
14
-
-
66449083078
-
ULK1
-
Ganley IG, Lam H, Wang J, Ding X, Chen S, Jiang X. 2009.ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284:12297-12305.
-
(2009)
ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem.
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam, H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
15
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S, Loewith R, Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124:471-484.
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
16
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K. 2002. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177-189.
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.4
Oshiro, N.5
Hidayat, S.6
Tokunaga, C.7
Avruch, J.8
Yonezawa, K.9
-
17
-
-
0037178786
-
mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163-175.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
18
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton
-
Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton. Curr. Biol. 14:1296-1302.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.H.3
Guertin, D.A.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
19
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol.182:685-701.
-
(2008)
J. Cell Biol.
, vol.182
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
Chandra, P.4
Roderick, H.L.5
Habermann, A.6
Griffiths, G.7
Ktistakis, N.T.8
-
20
-
-
77955895424
-
Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L
-
Matsunaga K, Morita E, Saitoh T, Akira S, Ktistakis NT, Izumi T, Noda T, Yoshimori T. 2010. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J. Cell Biol. 190:511-521.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 511-521
-
-
Matsunaga, K.1
Morita, E.2
Saitoh, T.3
Akira, S.4
Ktistakis, N.T.5
Izumi, T.6
Noda, T.7
Yoshimori, T.8
-
21
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
Itakura E, Mizushima N. 2010. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764-776.
-
(2010)
Autophagy
, vol.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
22
-
-
53049102656
-
The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function
-
Obara K, Sekito T, Niimi K, Ohsumi Y. 2008. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem. 283:23972-23980.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 23972-23980
-
-
Obara, K.1
Sekito, T.2
Niimi, K.3
Ohsumi, Y.4
-
23
-
-
11244289333
-
WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy
-
Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A. 2004. WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene 23:9314-9325.
-
(2004)
Oncogene
, vol.23
, pp. 9314-9325
-
-
Proikas-Cezanne, T.1
Waddell, S.2
Gaugel, A.3
Frickey, T.4
Lupas, A.5
Nordheim, A.6
-
24
-
-
8044257699
-
The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes
-
Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ. 1997. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem.243:240-246.
-
(1997)
Eur. J. Biochem.
, vol.243
, pp. 240-246
-
-
Blommaart, E.F.1
Krause, U.2
Schellens, J.P.3
Vreeling-Sindelarova, H.4
Meijer, A.J.5
-
25
-
-
33746729798
-
Myotubularin phosphatases: policing 3-phosphoinositides
-
Robinson FL, Dixon JE. 2006. Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol. 16:403-412.
-
(2006)
Trends Cell Biol.
, vol.16
, pp. 403-412
-
-
Robinson, F.L.1
Dixon, J.E.2
-
27
-
-
0029023971
-
The myotubular myopathies: differential diagnosis of the X linked recessive, autosomal dominant, and autosomal recessive forms and present state of DNA studies
-
Wallgren-Pettersson C, Clarke A, Samson F, Fardeau M, Dubowitz V, Moser H, Grimm T, Barohn RJ, Barth PG. 1995. The myotubular myopathies: differential diagnosis of the X linked recessive, autosomal dominant, and autosomal recessive forms and present state of DNA studies.J. Med. Genet. 32:673-679.
-
(1995)
J. Med. Genet
, vol.32
, pp. 673-679
-
-
Wallgren-Pettersson, C.1
Clarke, A.2
Samson, F.3
Fardeau, M.4
Dubowitz, V.5
Moser, H.6
Grimm, T.7
Barohn, R.J.8
Barth, P.G.9
-
28
-
-
34250380637
-
Myofiber size correlates with MTM1 mutation type and outcome in X-linked myotubular myopathy
-
Pierson CR, Agrawal PB, Blasko J, Beggs AH. 2007. Myofiber size correlates with MTM1 mutation type and outcome in X-linked myotubular myopathy. Neuromuscul. Disord. 17:562-568.
-
(2007)
Neuromuscul. Disord
, vol.17
, pp. 562-568
-
-
Pierson, C.R.1
Agrawal, P.B.2
Blasko, J.3
Beggs, A.H.4
-
29
-
-
0034071725
-
MTM1 mutations in X-linked myotubular myopathy
-
Laporte J, Biancalana V, Tanner SM, Kress W, Schneider V, Herger F, Buj-Bello A, Blondeau F, Liechti G, Mandel J-L. 2000. MTM1 mutations in X-linked myotubular myopathy. Hum. Mutat. 15:393-409.
-
(2000)
Hum. Mutat.
, vol.15
, pp. 393-409
-
-
Laporte, J.1
Biancalana, V.2
Tanner, S.M.3
Kress, W.4
Schneider, V.5
Herger, F.6
Buj-Bello, A.7
Blondeau, F.8
Liechti, G.9
Mandel, J-l.10
-
30
-
-
0034244437
-
Inaugural article: myotubularin,a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate
-
Taylor GS, Maehama T, Dixon JE. 2000. Inaugural article: myotubularin,a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate.Proc. Natl. Acad. Sci. U. S. A. 97:8910-8915.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 8910-8915
-
-
Taylor, G.S.1
Maehama, T.2
Dixon, J.E.3
-
32
-
-
68249153748
-
Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy
-
Vergne I, Roberts E, Elmaoued RA, Tosch V, Delgado MA, Proikas C, Laporte J, Deretic V. 2009. Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy. EMBO J. 28:2244-2258.
-
(2009)
EMBO J.
, vol.28
, pp. 2244-2258
-
-
Vergne, I.1
Roberts, E.2
Elmaoued, R.A.3
Tosch, V.4
Delgado, M.A.5
Proikas, C.6
Laporte, J.7
Deretic, V.8
-
33
-
-
77951708056
-
Modulation of local Ptdins3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy
-
Taguchi-Atarashi N, Hamasaki M, Matsunaga K, Omori H, Ktistakis NT, Noda T. 2010. Modulation of local Ptdins3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy. Traffic 11:468-478.
-
(2010)
Traffic
, vol.11
, pp. 468-478
-
-
Taguchi-Atarashi, N.1
Hamasaki, M.2
Matsunaga, K.3
Omori, H.4
Ktistakis, N.T.5
Noda, T.6
-
34
-
-
77954164144
-
Zebrafish MTMR14 is required for excitation-contraction coupling, developmental motor function and the regulation of autophagy
-
Dowling JJ, Low SE, Busta AS, Feldman EL. 2010. Zebrafish MTMR14 is required for excitation-contraction coupling, developmental motor function and the regulation of autophagy. Hum. Mol. Genet. 19:2668-2681.
-
(2010)
Hum. Mol. Genet
, vol.19
, pp. 2668-2681
-
-
Dowling, J.J.1
Low, S.E.2
Busta, A.S.3
Feldman, E.L.4
-
35
-
-
46249127073
-
AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis
-
Buj-Bello A, Fougerousse F, Schwab Y, Messaddeq N, Spehner D, Pierson CR, Durand M, Kretz C, Danos O, Douar AM, Beggs AH, Schultz P, Montus M, Denefle P, Mandel JL. 2008. AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis. Hum. Mol. Genet. 17:2132-2143.
-
(2008)
Hum. Mol. Genet
, vol.17
, pp. 2132-2143
-
-
Buj-Bello, A.1
Fougerousse, F.2
Schwab, Y.3
Messaddeq, N.4
Spehner, D.5
Pierson, C.R.6
Durand, M.7
Kretz, C.8
Danos, O.9
Douar, A.M.10
Beggs, A.H.11
Schultz, P.12
Montus, M.13
Denefle, P.14
Mandel, J.L.15
-
36
-
-
56249085615
-
Light microscopic methods to visualize mitochondria on tissue sections
-
Tanji K, Bonilla E. 2008. Light microscopic methods to visualize mitochondria on tissue sections. Methods 46:274-280.
-
(2008)
Methods
, vol.46
, pp. 274-280
-
-
Tanji, K.1
Bonilla, E.2
-
37
-
-
0037069371
-
The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice
-
Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier J-F, Mandel J-L. 2002. The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc.Natl. Acad. Sci. U. S. A. 99:15060-15065.
-
(2002)
Proc.Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 15060-15065
-
-
Buj-Bello, A.1
Laugel, V.2
Messaddeq, N.3
Zahreddine, H.4
Laporte, J.5
Pellissier, J.-F.6
Mandel, J.-L.7
-
38
-
-
78650942651
-
Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle
-
Hnia K, Tronchere H, Tomczak KK, Amoasii L, Schultz P, Beggs AH, Payrastre B, Mandel JL, Laporte J. 2011. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J. Clin. Invest. 121:70-85.
-
(2011)
J. Clin. Invest
, vol.121
, pp. 70-85
-
-
Hnia, K.1
Tronchere, H.2
Tomczak, K.K.3
Amoasii, L.4
Schultz, P.5
Beggs, A.H.6
Payrastre, B.7
Mandel, J.L.8
Laporte, J.9
-
39
-
-
6344260556
-
Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle
-
Paulin D, Li Z. 2004. Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp. Cell Res.301:1-7.
-
(2004)
Exp. Cell Res.
, vol.301
, pp. 1-7
-
-
Paulin, D.1
Li, Z.2
-
40
-
-
60849099049
-
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
-
Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, Mcewan DG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Overvatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T. 2009. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33:505-516.
-
(2009)
Mol. Cell
, vol.33
, pp. 505-516
-
-
Kirkin, V.1
Lamark, T.2
Sou, Y.S.3
Bjorkoy, G.4
Nunn, J.L.5
Bruun, J.A.6
Shvets, E.7
Mcewan, D.G.8
Clausen, T.H.9
Wild, P.10
Bilusic, I.11
Theurillat, J.P.12
Overvatn, A.13
Ishii, T.14
Elazar, Z.15
Komatsu, M.16
Dikic, I.17
Johansen, T.18
-
41
-
-
34548259958
-
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:24131-24145.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
Overvatn, A.7
Bjorkoy, G.8
Johansen, T.9
-
42
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1.Nat. Cell Biol. 12:213-223.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
Taguchi, K.4
Kobayashi, A.5
Ichimura, Y.6
Sou, Y.S.7
Ueno, I.8
Sakamoto, A.9
Tong, K.I.10
Kim, M.11
Nishito, Y.12
Iemura, S.13
Natsume, T.14
Ueno, T.15
Kominami, E.16
Motohashi, H.17
Tanaka, K.18
Yamamoto, M.19
-
43
-
-
1542283812
-
In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
-
Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. 2004.In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol.Biol. Cell 15:1101-1111.
-
(2004)
Mol.Biol. Cell
, vol.15
, pp. 1101-1111
-
-
Mizushima, N.1
Yamamoto, A.2
Matsui, M.3
Yoshimori, T.4
Ohsumi, Y.5
-
44
-
-
77956416339
-
Autophagy in mammalian development and differentiation
-
Mizushima N, Levine B. 2010. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12:823-830.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 823-830
-
-
Mizushima, N.1
Levine, B.2
-
45
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B, Guan KL. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132-141.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
47
-
-
79960348203
-
Relieving autophagy and 4EBP1 from rapamycin resistance
-
Nyfeler B, Bergman P, Triantafellow E, Wilson CJ, Zhu Y, Radetich B, Finan PM, Klionsky DJ, Murphy LO. 2011. Relieving autophagy and 4EBP1 from rapamycin resistance. Mol. Cell. Biol. 31:2867-2876.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 2867-2876
-
-
Nyfeler, B.1
Bergman, P.2
Triantafellow, E.3
Wilson, C.J.4
Zhu, Y.5
Radetich, B.6
Finan, P.M.7
Klionsky, D.J.8
Murphy, L.O.9
-
48
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. 2009. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284:8023-8032.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
Liu, Q.4
Zhang, J.5
Gao, Y.6
Reichling, L.J.7
Sim, T.8
Sabatini, D.M.9
Gray, N.S.10
-
49
-
-
75149112670
-
AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity
-
Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, Ellston R, Jones D, Sini P, James D, Howard Z, Dudley P, Smith L, Maguire S, Hummersone M, Malagu K, Menear K, Jenkins R, Jacobsen M, Smith GCM, Guichard S, Pass M. 2010. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70:288-298.
-
(2010)
Cancer Res.
, vol.70
, pp. 288-298
-
-
Chresta, C.M.1
Davies, B.R.2
Hickson, I.3
Harding, T.4
Cosulich, S.5
Critchlow, S.E.6
Ellston, R.7
Jones, D.8
Sini, P.9
James, D.10
Howard, Z.11
Dudley, P.12
Smith, L.13
Maguire, S.14
Hummersone, M.15
Malagu, K.16
Menear, K.17
Jenkins, R.18
Jacobsen, M.19
Smith, G.C.M.20
Guichard, S.21
Pass, M.22
more..
-
50
-
-
23844558266
-
A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
-
Wallace DC. 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu.Rev. Genet. 39:359-407.
-
(2005)
Annu.Rev. Genet.
, vol.39
, pp. 359-407
-
-
Wallace, D.C.1
-
51
-
-
77951737783
-
Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations
-
Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC. 2010. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141:280-289.
-
(2010)
Cell
, vol.141
, pp. 280-289
-
-
Chen, H.1
Vermulst, M.2
Wang, Y.E.3
Chomyn, A.4
Prolla, T.A.5
Mccaffery, J.M.6
Chan, D.C.7
-
52
-
-
77952586060
-
Mitochondrial fission and remodelling contributes to muscle atrophy
-
Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del PP, Foretz M, Scorrano L, Rudolf R, Sandri M.2010. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J. 29:1774-1785.
-
(2010)
EMBO J.
, vol.29
, pp. 1774-1785
-
-
Romanello, V.1
Guadagnin, E.2
Gomes, L.3
Roder, I.4
Sandri, C.5
Petersen, Y.6
Milan, G.7
Masiero, E.8
Del, P.P.9
Foretz, M.10
Scorrano, L.11
Rudolf, R.12
Sandri, M.13
-
53
-
-
84859090262
-
Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice
-
doi:10.1126/scisignal.2002739
-
Menon S, Yecies JL, Zhang HH, Howell JJ, Nicholatos J, Harputlugil E, Bronson RT, Kwiatkowski DJ, Manning BD. 2012. Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice.Sci. Signal. 5:ra24. doi:10.1126/scisignal.2002739.
-
(2012)
Sci. Signal
, vol.5
, pp. 24
-
-
Menon, S.1
Yecies, J.L.2
Zhang, H.H.3
Howell, J.J.4
Nicholatos, J.5
Harputlugil, E.6
Bronson, R.T.7
Kwiatkowski, D.J.8
Manning, B.D.9
-
54
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
Martina JA, Chen Y, Gucek M, Puertollano R. 2012. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 8:903-914.
-
(2012)
Autophagy
, vol.8
, pp. 903-914
-
-
Martina, J.A.1
Chen, Y.2
Gucek, M.3
Puertollano, R.4
-
55
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C, Di MC, Polito VA, Garcia AM, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332:1429-1433.
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Di, M.C.2
Polito, V.A.3
Garcia, A.M.4
Vetrini, F.5
Erdin, S.6
Erdin, S.U.7
Huynh, T.8
Medina, D.9
Colella, P.10
Sardiello, M.11
Rubinsztein, D.C.12
Ballabio, A.13
-
56
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496-1501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
57
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM.2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
58
-
-
54249096642
-
Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking
-
Cao C, Backer JM, Laporte J, Bedrick EJ, Wandinger-Ness A. 2008.Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Mol. Biol. Cell 19:3334-3346.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 3334-3346
-
-
Cao, C.1
Backer, J.M.2
Laporte, J.3
Bedrick, E.J.4
Wandinger-Ness, A.5
-
59
-
-
77955458776
-
Drosophila Mtm and class II PI3K coregulate a PI(3)P pool with cortical and endolysosomal functions
-
Velichkova M, Juan J, Kadandale P, Jean S, Ribeiro I, Raman V, Stefan C, Kiger AA. 2010. Drosophila Mtm and class II PI3K coregulate a PI(3)P pool with cortical and endolysosomal functions. J. Cell Biol. 190:407-425.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 407-425
-
-
Velichkova, M.1
Juan, J.2
Kadandale, P.3
Jean, S.4
Ribeiro, I.5
Raman, V.6
Stefan, C.7
Kiger, A.A.8
-
60
-
-
84864523531
-
Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival
-
doi:10.1126/scitranslmed.3003802
-
Ramos FJ, Chen SC, Garelick MG, Dai DF, Liao CY, Schreiber KH, Mackay VL, An EH, Strong R, Ladiges WC, Rabinovitch PS, Kaeberlein M, Kennedy BK. 2012. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl. Med. 4:144ra103. doi:10.1126/scitranslmed.3003802.
-
(2012)
Sci. Transl. Med.
, vol.4
, pp. 144-103
-
-
Ramos, F.J.1
Chen, S.C.2
Garelick, M.G.3
Dai, D.F.4
Liao, C.Y.5
Schreiber, K.H.6
Mackay, V.L.7
An, E.H.8
Strong, R.9
Ladiges, W.C.10
Rabinovitch, P.S.11
Kaeberlein, M.12
Kennedy, B.K.13
-
61
-
-
78149319082
-
Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration
-
Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, Blaauw B, Urciuolo A, Tiepolo T, Merlini L, Maraldi NM, Bernardi P, Sandri M, Bonaldo P. 2010. Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat.Med. 16:1313-1320.
-
(2010)
Nat.Med.
, vol.16
, pp. 1313-1320
-
-
Grumati, P.1
Coletto, L.2
Sabatelli, P.3
Cescon, M.4
Angelin, A.5
Bertaggia, E.6
Blaauw, B.7
Urciuolo, A.8
Tiepolo, T.9
Merlini, L.10
Maraldi, N.M.11
Bernardi, P.12
Sandri, M.13
Bonaldo, P.14
|