메뉴 건너뛰기




Volumn 37, Issue 12, 2012, Pages 543-552

Interplay of DNA repair with transcription: From structures to mechanisms

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL PROTEIN; DOUBLE STRANDED DNA; PROTEIN MFD; PROTEIN UVRA; PROTEIN UVRB; RNA POLYMERASE; UNCLASSIFIED DRUG;

EID: 84870058397     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2012.09.002     Document Type: Review
Times cited : (12)

References (78)
  • 2
    • 62349131315 scopus 로고    scopus 로고
    • DNA repair in mammalian cells: nucleotide excision repair: variations on versatility
    • Nouspikel T. DNA repair in mammalian cells: nucleotide excision repair: variations on versatility. Cell. Mol. Life Sci. 2009, 66:994-1009.
    • (2009) Cell. Mol. Life Sci. , vol.66 , pp. 994-1009
    • Nouspikel, T.1
  • 3
    • 0025033354 scopus 로고
    • Structure and function of the (A)BC excinuclease of Escherichia coli
    • Selby C.P., Sancar A. Structure and function of the (A)BC excinuclease of Escherichia coli. Mutat. Res. 1990, 236:203-211.
    • (1990) Mutat. Res. , vol.236 , pp. 203-211
    • Selby, C.P.1    Sancar, A.2
  • 4
    • 33644619706 scopus 로고    scopus 로고
    • Prokaryotic nucleotide excision repair: the UvrABC system
    • Truglio J.J., et al. Prokaryotic nucleotide excision repair: the UvrABC system. Chem. Rev. 2006, 106:233-252.
    • (2006) Chem. Rev. , vol.106 , pp. 233-252
    • Truglio, J.J.1
  • 5
    • 0021905437 scopus 로고
    • DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall
    • Bohr V.A., et al. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 1985, 40:359-369.
    • (1985) Cell , vol.40 , pp. 359-369
    • Bohr, V.A.1
  • 6
    • 0023663101 scopus 로고
    • Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene
    • Mellon I., et al. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 1987, 51:241-249.
    • (1987) Cell , vol.51 , pp. 241-249
    • Mellon, I.1
  • 7
    • 0024426244 scopus 로고
    • Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand
    • Mellon I., Hanawalt P.C. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 1989, 342:95-98.
    • (1989) Nature , vol.342 , pp. 95-98
    • Mellon, I.1    Hanawalt, P.C.2
  • 8
    • 56749157389 scopus 로고    scopus 로고
    • Transcription-coupled DNA repair: two decades of progress and surprises
    • Hanawalt P.C., Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 2008, 9:958-970.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 958-970
    • Hanawalt, P.C.1    Spivak, G.2
  • 9
    • 62349130094 scopus 로고    scopus 로고
    • DNA repair in mammalian cells: transcription-coupled DNA repair: directing your effort where it's most needed
    • Tornaletti S. DNA repair in mammalian cells: transcription-coupled DNA repair: directing your effort where it's most needed. Cell. Mol. Life Sci. 2009, 66:1010-1020.
    • (2009) Cell. Mol. Life Sci. , vol.66 , pp. 1010-1020
    • Tornaletti, S.1
  • 10
    • 33846053661 scopus 로고    scopus 로고
    • Equal rates of repair of DNA photoproducts in transcribed and non-transcribed strands in Sulfolobus solfataricus
    • Dorazi R., et al. Equal rates of repair of DNA photoproducts in transcribed and non-transcribed strands in Sulfolobus solfataricus. Mol. Microbiol. 2007, 63:521-529.
    • (2007) Mol. Microbiol. , vol.63 , pp. 521-529
    • Dorazi, R.1
  • 11
    • 33845770385 scopus 로고    scopus 로고
    • Lack of strand-specific repair of UV-induced DNA lesions in three genes of the archaeon Sulfolobus solfataricus
    • Romano V., et al. Lack of strand-specific repair of UV-induced DNA lesions in three genes of the archaeon Sulfolobus solfataricus. J. Mol. Biol. 2007, 365:921-929.
    • (2007) J. Mol. Biol. , vol.365 , pp. 921-929
    • Romano, V.1
  • 12
    • 32044436258 scopus 로고    scopus 로고
    • Structural basis for bacterial transcription-coupled DNA repair
    • Deaconescu A.M., et al. Structural basis for bacterial transcription-coupled DNA repair. Cell 2006, 124:507-520.
    • (2006) Cell , vol.124 , pp. 507-520
    • Deaconescu, A.M.1
  • 13
    • 29144437721 scopus 로고    scopus 로고
    • Structural basis for transcription-coupled repair: the N terminus of Mfd resembles UvrB with degenerate ATPase motifs
    • Assenmacher N., et al. Structural basis for transcription-coupled repair: the N terminus of Mfd resembles UvrB with degenerate ATPase motifs. J. Mol. Biol. 2006, 355:675-683.
    • (2006) J. Mol. Biol. , vol.355 , pp. 675-683
    • Assenmacher, N.1
  • 14
    • 70350643700 scopus 로고    scopus 로고
    • An N-terminal clamp restrains the motor domains of the bacterial transcription-repair coupling factor Mfd
    • Murphy M.N., et al. An N-terminal clamp restrains the motor domains of the bacterial transcription-repair coupling factor Mfd. Nucleic Acids Res. 2009, 37:6042-6053.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 6042-6053
    • Murphy, M.N.1
  • 15
    • 32044461391 scopus 로고    scopus 로고
    • Crystallization and preliminary structure determination of Escherichia coli Mfd, the transcription-repair coupling factor
    • Deaconescu A.M., Darst S.A. Crystallization and preliminary structure determination of Escherichia coli Mfd, the transcription-repair coupling factor. Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun. 2005, 61:1062-1064.
    • (2005) Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun. , vol.61 , pp. 1062-1064
    • Deaconescu, A.M.1    Darst, S.A.2
  • 16
    • 84857712462 scopus 로고    scopus 로고
    • Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface
    • Deaconescu A.M., et al. Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:3353-3358.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 3353-3358
    • Deaconescu, A.M.1
  • 17
    • 0345531143 scopus 로고    scopus 로고
    • A DNA translocation motif in the bacterial transcription-repair coupling factor, Mfd
    • Chambers A.L., et al. A DNA translocation motif in the bacterial transcription-repair coupling factor, Mfd. Nucleic Acids Res. 2003, 31:6409-6418.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 6409-6418
    • Chambers, A.L.1
  • 18
    • 79955745080 scopus 로고    scopus 로고
    • Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor
    • Prabha S., et al. Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor. PLoS ONE 2011, 6:e19131.
    • (2011) PLoS ONE , vol.6
    • Prabha, S.1
  • 19
    • 0037077154 scopus 로고    scopus 로고
    • E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation
    • Park J-S., et al. E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 2002, 109:757-767.
    • (2002) Cell , vol.109 , pp. 757-767
    • Park, J.-S.1
  • 20
    • 0346275194 scopus 로고    scopus 로고
    • Characterization of transcription-repair coupling factors in E. coli and humans
    • Selby C.P., Sancar A. Characterization of transcription-repair coupling factors in E. coli and humans. Methods Enzymol. 2003, 371:300-324.
    • (2003) Methods Enzymol. , vol.371 , pp. 300-324
    • Selby, C.P.1    Sancar, A.2
  • 21
    • 80052008241 scopus 로고    scopus 로고
    • Linking RNA polymerase backtracking to genome instability in E. coli
    • Dutta D., et al. Linking RNA polymerase backtracking to genome instability in E. coli. Cell 2011, 146:533-543.
    • (2011) Cell , vol.146 , pp. 533-543
    • Dutta, D.1
  • 22
    • 0038756088 scopus 로고    scopus 로고
    • Cooperation between RNA polymerase molecules in transcription elongation
    • Epshtein V., Nudler E. Cooperation between RNA polymerase molecules in transcription elongation. Science 2003, 300:801-805.
    • (2003) Science , vol.300 , pp. 801-805
    • Epshtein, V.1    Nudler, E.2
  • 23
    • 33846980409 scopus 로고    scopus 로고
    • CPD damage recognition by transcribing RNA polymerase II
    • Brueckner F., et al. CPD damage recognition by transcribing RNA polymerase II. Science 2007, 315:859-862.
    • (2007) Science , vol.315 , pp. 859-862
    • Brueckner, F.1
  • 24
    • 52049097060 scopus 로고    scopus 로고
    • Effects of the bacterial transcription-repair coupling factor during transcription of DNA containing non-bulky lesions
    • Smith A.J., Savery N.J. Effects of the bacterial transcription-repair coupling factor during transcription of DNA containing non-bulky lesions. DNA Repair (Amst.) 2008, 7:1670-1679.
    • (2008) DNA Repair (Amst.) , vol.7 , pp. 1670-1679
    • Smith, A.J.1    Savery, N.J.2
  • 25
    • 78650310283 scopus 로고    scopus 로고
    • Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein
    • Tagami S., et al. Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein. Nature 2010, 468:978-982.
    • (2010) Nature , vol.468 , pp. 978-982
    • Tagami, S.1
  • 26
    • 84869037785 scopus 로고    scopus 로고
    • Multipartite control of the DNA translocase, Mfd
    • Smith A.J., et al. Multipartite control of the DNA translocase, Mfd. Nucleic Acids Res. 2012, 10.1093/nar/gks775.
    • (2012) Nucleic Acids Res.
    • Smith, A.J.1
  • 27
    • 0028969976 scopus 로고
    • Structure and function of transcription-repair coupling factor. I. Structural domains and binding properties
    • Selby C.P., Sancar A. Structure and function of transcription-repair coupling factor. I. Structural domains and binding properties. J. Biol. Chem. 1995, 270:4882-4889.
    • (1995) J. Biol. Chem. , vol.270 , pp. 4882-4889
    • Selby, C.P.1    Sancar, A.2
  • 28
    • 78650415624 scopus 로고    scopus 로고
    • Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction
    • Westblade L.F., et al. Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction. Nucleic Acids Res. 2010, 38:8357-8369.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 8357-8369
    • Westblade, L.F.1
  • 29
    • 13844317928 scopus 로고    scopus 로고
    • RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair
    • Smith A.J., Savery N.J. RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair. Nucleic Acids Res. 2005, 33:755-764.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 755-764
    • Smith, A.J.1    Savery, N.J.2
  • 30
    • 77956522905 scopus 로고    scopus 로고
    • The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor
    • Hauk G., et al. The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol. Cell 2010, 39:711-723.
    • (2010) Mol. Cell , vol.39 , pp. 711-723
    • Hauk, G.1
  • 31
    • 34247859353 scopus 로고    scopus 로고
    • Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase
    • Smith A.J., et al. Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase. Nucleic Acids Res. 2007, 35:1802-1811.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 1802-1811
    • Smith, A.J.1
  • 32
    • 0030804783 scopus 로고    scopus 로고
    • RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair
    • Selby C.P., et al. RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair. Nucleic Acids Res. 1997, 25:787-793.
    • (1997) Nucleic Acids Res. , vol.25 , pp. 787-793
    • Selby, C.P.1
  • 33
    • 0016273095 scopus 로고
    • Ribonucleic acid chain elongation by Escherichia coli ribonucleic acid polymerase. I. Isolation of ternary complexes and the kinetics of elongation
    • Rhodes G., Chamberlin M.J. Ribonucleic acid chain elongation by Escherichia coli ribonucleic acid polymerase. I. Isolation of ternary complexes and the kinetics of elongation. J. Biol. Chem. 1974, 249:6675-6683.
    • (1974) J. Biol. Chem. , vol.249 , pp. 6675-6683
    • Rhodes, G.1    Chamberlin, M.J.2
  • 34
    • 33846930416 scopus 로고    scopus 로고
    • The bacterial transcription repair coupling factor
    • Deaconescu A.M., et al. The bacterial transcription repair coupling factor. Curr. Opin. Struct. Biol. 2007, 17:96-102.
    • (2007) Curr. Opin. Struct. Biol. , vol.17 , pp. 96-102
    • Deaconescu, A.M.1
  • 35
    • 80051668431 scopus 로고    scopus 로고
    • Roadblock repression of transcription by Bacillus subtilis CodY
    • Belitsky B.R., Sonenshein A.L. Roadblock repression of transcription by Bacillus subtilis CodY. J. Mol. Biol. 2011, 411:729-743.
    • (2011) J. Mol. Biol. , vol.411 , pp. 729-743
    • Belitsky, B.R.1    Sonenshein, A.L.2
  • 36
    • 75749150810 scopus 로고    scopus 로고
    • Direct restart of a replication fork stalled by a head-on RNA polymerase
    • Pomerantz R.T., O'Donnell M. Direct restart of a replication fork stalled by a head-on RNA polymerase. Science 2010, 327:590-592.
    • (2010) Science , vol.327 , pp. 590-592
    • Pomerantz, R.T.1    O'Donnell, M.2
  • 37
    • 33645514260 scopus 로고    scopus 로고
    • Role of DNA bubble rewinding in enzymatic transcription termination
    • Park J.S., Roberts J.W. Role of DNA bubble rewinding in enzymatic transcription termination. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:4870-4875.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 4870-4875
    • Park, J.S.1    Roberts, J.W.2
  • 38
    • 0032113494 scopus 로고    scopus 로고
    • Crucial role of the RNA:DNA hybrid in the processivity of transcription
    • Sidorenkov I., et al. Crucial role of the RNA:DNA hybrid in the processivity of transcription. Mol. Cell 1998, 2:55-64.
    • (1998) Mol. Cell , vol.2 , pp. 55-64
    • Sidorenkov, I.1
  • 39
    • 74549191169 scopus 로고    scopus 로고
    • An allosteric mechanism of Rho-dependent transcription termination
    • Epshtein V., et al. An allosteric mechanism of Rho-dependent transcription termination. Nature 2010, 463:245-249.
    • (2010) Nature , vol.463 , pp. 245-249
    • Epshtein, V.1
  • 40
    • 79953792360 scopus 로고    scopus 로고
    • Clamping the clamp of RNA polymerase
    • Svetlov V., Nudler E. Clamping the clamp of RNA polymerase. EMBO J. 2011, 30:1190-1191.
    • (2011) EMBO J. , vol.30 , pp. 1190-1191
    • Svetlov, V.1    Nudler, E.2
  • 41
    • 79960449643 scopus 로고    scopus 로고
    • The beta subunit gate loop is required for RNA polymerase modification by RfaH and NusG
    • Sevostyanova A., et al. The beta subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Mol. Cell 2011, 43:253-262.
    • (2011) Mol. Cell , vol.43 , pp. 253-262
    • Sevostyanova, A.1
  • 42
    • 67649660560 scopus 로고    scopus 로고
    • CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence
    • Stallings C.L., et al. CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell 2009, 138:146-159.
    • (2009) Cell , vol.138 , pp. 146-159
    • Stallings, C.L.1
  • 43
    • 77955981319 scopus 로고    scopus 로고
    • Transcription-coupled nucleotide excision repair of a gene transcribed by bacteriophage T7 RNA polymerase in Escherichia coli
    • Ganesan A.K., Hanawalt P.C. Transcription-coupled nucleotide excision repair of a gene transcribed by bacteriophage T7 RNA polymerase in Escherichia coli. DNA Repair (Amst.) 2010, 9:958-963.
    • (2010) DNA Repair (Amst.) , vol.9 , pp. 958-963
    • Ganesan, A.K.1    Hanawalt, P.C.2
  • 44
    • 0027905034 scopus 로고
    • Molecular mechanism of transcription-repair coupling
    • Selby C.P., Sancar A. Molecular mechanism of transcription-repair coupling. Science 1993, 260:53-58.
    • (1993) Science , vol.260 , pp. 53-58
    • Selby, C.P.1    Sancar, A.2
  • 45
    • 0028949551 scopus 로고
    • Structure and function of transcription-repair coupling factor. II. Catalytic properties
    • Selby C.P., Sancar A. Structure and function of transcription-repair coupling factor. II. Catalytic properties. J. Biol. Chem. 1995, 270:4890-4895.
    • (1995) J. Biol. Chem. , vol.270 , pp. 4890-4895
    • Selby, C.P.1    Sancar, A.2
  • 46
    • 0031779321 scopus 로고    scopus 로고
    • Transcription-repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons
    • Zalieckas J.M., et al. Transcription-repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons. Mol. Microbiol. 1998, 27:1031-1038.
    • (1998) Mol. Microbiol. , vol.27 , pp. 1031-1038
    • Zalieckas, J.M.1
  • 47
    • 0029939231 scopus 로고    scopus 로고
    • The Mfd protein of Bacillus subtilis 168 is involved in both transcription-coupled DNA repair and DNA recombination
    • Ayora S., et al. The Mfd protein of Bacillus subtilis 168 is involved in both transcription-coupled DNA repair and DNA recombination. J. Mol. Biol. 1996, 256:301-318.
    • (1996) J. Mol. Biol. , vol.256 , pp. 301-318
    • Ayora, S.1
  • 48
    • 0037716599 scopus 로고    scopus 로고
    • Role of E. coli transcription-repair coupling factor Mfd in Nun-mediated transcription termination
    • Washburn R.S., et al. Role of E. coli transcription-repair coupling factor Mfd in Nun-mediated transcription termination. J. Mol. Biol. 2003, 329:655-662.
    • (2003) J. Mol. Biol. , vol.329 , pp. 655-662
    • Washburn, R.S.1
  • 49
    • 38349057357 scopus 로고    scopus 로고
    • Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated dimerization, UvrB interaction, and DNA binding
    • Pakotiprapha D., et al. Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated dimerization, UvrB interaction, and DNA binding. Mol. Cell 2008, 29:122-133.
    • (2008) Mol. Cell , vol.29 , pp. 122-133
    • Pakotiprapha, D.1
  • 50
    • 64349111954 scopus 로고    scopus 로고
    • Structural and mutational analyses of Deinococcus radiodurans UvrA2 provide insight into DNA binding and damage recognition by UvrAs
    • Timmins J., et al. Structural and mutational analyses of Deinococcus radiodurans UvrA2 provide insight into DNA binding and damage recognition by UvrAs. Structure 2009, 17:547-558.
    • (2009) Structure , vol.17 , pp. 547-558
    • Timmins, J.1
  • 51
    • 84862777426 scopus 로고    scopus 로고
    • Structure and mechanism of the UvrA-UvrB DNA damage sensor
    • Pakotiprapha D., et al. Structure and mechanism of the UvrA-UvrB DNA damage sensor. Nat. Struct. Mol. Biol. 2012, 19:291-298.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 291-298
    • Pakotiprapha, D.1
  • 52
    • 80052475667 scopus 로고    scopus 로고
    • The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action
    • Rossi F., et al. The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action. Nucleic Acids Res. 2011, 39:7316-7328.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 7316-7328
    • Rossi, F.1
  • 53
    • 79551624662 scopus 로고    scopus 로고
    • Structure of UvrA nucleotide excision repair protein in complex with modified DNA
    • Jaciuk M., et al. Structure of UvrA nucleotide excision repair protein in complex with modified DNA. Nat. Struct. Mol. Biol. 2011, 18:191-197.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 191-197
    • Jaciuk, M.1
  • 54
    • 78649968104 scopus 로고    scopus 로고
    • Regulation and rate enhancement during transcription-coupled DNA repair
    • Manelyte L., et al. Regulation and rate enhancement during transcription-coupled DNA repair. Mol. Cell 2010, 40:714-724.
    • (2010) Mol. Cell , vol.40 , pp. 714-724
    • Manelyte, L.1
  • 55
    • 0034734379 scopus 로고    scopus 로고
    • The nucleotide excision repair protein UvrB, a helicase-like enzyme with a catch
    • Theis K., et al. The nucleotide excision repair protein UvrB, a helicase-like enzyme with a catch. Mutat. Res. 2000, 460:277-300.
    • (2000) Mutat. Res. , vol.460 , pp. 277-300
    • Theis, K.1
  • 56
    • 10944222014 scopus 로고    scopus 로고
    • Identification of residues within UvrB that are important for efficient DNA binding and damage processing
    • Skorvaga M., et al. Identification of residues within UvrB that are important for efficient DNA binding and damage processing. J. Biol. Chem. 2004, 279:51574-51580.
    • (2004) J. Biol. Chem. , vol.279 , pp. 51574-51580
    • Skorvaga, M.1
  • 57
    • 33744948123 scopus 로고    scopus 로고
    • Structural basis for DNA recognition and processing by UvrB
    • Truglio J., et al. Structural basis for DNA recognition and processing by UvrB. Nat. Struct. Mol. Biol. 2006, 13:360-364.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 360-364
    • Truglio, J.1
  • 58
    • 0036682613 scopus 로고    scopus 로고
    • The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands
    • Verhoeven E.E., et al. The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands. EMBO J. 2002, 21:4196-4205.
    • (2002) EMBO J. , vol.21 , pp. 4196-4205
    • Verhoeven, E.E.1
  • 59
    • 67649730094 scopus 로고    scopus 로고
    • A structural model for the damage-sensing complex in bacterial nucleotide excision repair
    • Pakotiprapha D., et al. A structural model for the damage-sensing complex in bacterial nucleotide excision repair. J. Biol. Chem. 2009, 284:12837-12844.
    • (2009) J. Biol. Chem. , vol.284 , pp. 12837-12844
    • Pakotiprapha, D.1
  • 60
    • 67349225259 scopus 로고    scopus 로고
    • The alkyltransferase-like ybaZ gene product enhances nucleotide excision repair of O(6)-alkylguanine adducts in E. coli
    • Mazon G., et al. The alkyltransferase-like ybaZ gene product enhances nucleotide excision repair of O(6)-alkylguanine adducts in E. coli. DNA Repair (Amst.) 2009, 8:697-703.
    • (2009) DNA Repair (Amst.) , vol.8 , pp. 697-703
    • Mazon, G.1
  • 61
    • 77957275003 scopus 로고    scopus 로고
    • Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli
    • Cohen S.E., et al. Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:15517-15522.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 15517-15522
    • Cohen, S.E.1
  • 62
    • 84863857131 scopus 로고    scopus 로고
    • Atl1 regulates choice between global genome and transcription-coupled repair of O(6)-alkylguanines
    • Latypov V.F., et al. Atl1 regulates choice between global genome and transcription-coupled repair of O(6)-alkylguanines. Mol. Cell 2012, 47:50-60.
    • (2012) Mol. Cell , vol.47 , pp. 50-60
    • Latypov, V.F.1
  • 63
    • 0014004977 scopus 로고
    • Radiation-induced mutations and their repair
    • Witkin E.M. Radiation-induced mutations and their repair. Science 1966, 152:1345-1353.
    • (1966) Science , vol.152 , pp. 1345-1353
    • Witkin, E.M.1
  • 64
    • 0025976369 scopus 로고
    • Transcript elongation and termination are competitive kinetic processes
    • von Hippel P.H., Yager T.D. Transcript elongation and termination are competitive kinetic processes. Proc. Natl. Acad. Sci. U.S.A. 1991, 88:2307-2311.
    • (1991) Proc. Natl. Acad. Sci. U.S.A. , vol.88 , pp. 2307-2311
    • von Hippel, P.H.1    Yager, T.D.2
  • 65
    • 0026084789 scopus 로고
    • A thermodynamic analysis of RNA transcript elongation and termination in Escherichia coli
    • Yager T.D., von Hippel P.H. A thermodynamic analysis of RNA transcript elongation and termination in Escherichia coli. Biochemistry 1991, 30:1097-1118.
    • (1991) Biochemistry , vol.30 , pp. 1097-1118
    • Yager, T.D.1    von Hippel, P.H.2
  • 66
    • 79960395328 scopus 로고    scopus 로고
    • Bacterial transcription terminators: the RNA 3'-end chronicles
    • Peters J.M., et al. Bacterial transcription terminators: the RNA 3'-end chronicles. J. Mol. Biol. 2011, 412:793-813.
    • (2011) J. Mol. Biol. , vol.412 , pp. 793-813
    • Peters, J.M.1
  • 67
    • 41249091442 scopus 로고    scopus 로고
    • Direct spectroscopic study of reconstituted transcription complexes reveals that intrinsic termination is driven primarily by thermodynamic destabilization of the nucleic acid framework
    • Datta K., von Hippel P.H. Direct spectroscopic study of reconstituted transcription complexes reveals that intrinsic termination is driven primarily by thermodynamic destabilization of the nucleic acid framework. J. Biol. Chem. 2008, 283:3537-3549.
    • (2008) J. Biol. Chem. , vol.283 , pp. 3537-3549
    • Datta, K.1    von Hippel, P.H.2
  • 68
    • 34547501055 scopus 로고    scopus 로고
    • Dissociation of halted T7 RNA polymerase elongation complexes proceeds via a forward-translocation mechanism
    • Zhou Y., et al. Dissociation of halted T7 RNA polymerase elongation complexes proceeds via a forward-translocation mechanism. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:10352-10357.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 10352-10357
    • Zhou, Y.1
  • 69
    • 37349115934 scopus 로고    scopus 로고
    • An allosteric path to transcription termination
    • Epshtein V., et al. An allosteric path to transcription termination. Mol. Cell 2007, 28:991-1001.
    • (2007) Mol. Cell , vol.28 , pp. 991-1001
    • Epshtein, V.1
  • 70
    • 40749096382 scopus 로고    scopus 로고
    • Applied force reveals mechanistic and energetic details of transcription termination
    • Larson M.H., et al. Applied force reveals mechanistic and energetic details of transcription termination. Cell 2008, 132:971-982.
    • (2008) Cell , vol.132 , pp. 971-982
    • Larson, M.H.1
  • 71
    • 1842610540 scopus 로고    scopus 로고
    • Mfd, the bacterial transcription repair coupling factor: translocation, repair and termination
    • Roberts J., Park J.S. Mfd, the bacterial transcription repair coupling factor: translocation, repair and termination. Curr. Opin. Microbiol. 2004, 7:120-125.
    • (2004) Curr. Opin. Microbiol. , vol.7 , pp. 120-125
    • Roberts, J.1    Park, J.S.2
  • 72
    • 0037059785 scopus 로고    scopus 로고
    • The beta -hairpin motif of UvrB is essential for DNA binding, damage processing, and UvrC-mediated incisions
    • Skorvaga M., et al. The beta -hairpin motif of UvrB is essential for DNA binding, damage processing, and UvrC-mediated incisions. J. Biol. Chem. 2002, 277:1553-1559.
    • (2002) J. Biol. Chem. , vol.277 , pp. 1553-1559
    • Skorvaga, M.1
  • 73
    • 3343008808 scopus 로고    scopus 로고
    • Interactions between UvrA and UvrB: the role of UvrB's domain 2 in nucleotide excision repair
    • Truglio J.J., et al. Interactions between UvrA and UvrB: the role of UvrB's domain 2 in nucleotide excision repair. EMBO J. 2004, 23:2498-2509.
    • (2004) EMBO J. , vol.23 , pp. 2498-2509
    • Truglio, J.J.1
  • 74
    • 0026354699 scopus 로고
    • Escherichia coli mfd mutant deficient in " mutation frequency decline" lacks strand-specific repair: in vitro complementation with purified coupling factor
    • Selby C.P., et al. Escherichia coli mfd mutant deficient in " mutation frequency decline" lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc. Natl. Acad. Sci. U.S.A. 1991, 88:11574-11578.
    • (1991) Proc. Natl. Acad. Sci. U.S.A. , vol.88 , pp. 11574-11578
    • Selby, C.P.1
  • 75
    • 69949141607 scopus 로고    scopus 로고
    • The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA
    • Yang X., et al. The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA. EMBO Rep. 2009, 10:997-1002.
    • (2009) EMBO Rep. , vol.10 , pp. 997-1002
    • Yang, X.1
  • 76
    • 37749048465 scopus 로고    scopus 로고
    • A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli
    • Chen C.S., et al. A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat. Methods 2008, 5:69-74.
    • (2008) Nat. Methods , vol.5 , pp. 69-74
    • Chen, C.S.1
  • 77
    • 67249113070 scopus 로고    scopus 로고
    • Flipping of alkylated DNA damage bridges base and nucleotide excision repair
    • Tubbs J.L., et al. Flipping of alkylated DNA damage bridges base and nucleotide excision repair. Nature 2009, 459:808-813.
    • (2009) Nature , vol.459 , pp. 808-813
    • Tubbs, J.L.1
  • 78
    • 77951582198 scopus 로고    scopus 로고
    • Structural basis of O6-alkylguanine recognition by a bacterial alkyltransferase-like DNA repair protein
    • Aramini J.M., et al. Structural basis of O6-alkylguanine recognition by a bacterial alkyltransferase-like DNA repair protein. J. Biol. Chem. 2010, 285:13736-13741.
    • (2010) J. Biol. Chem. , vol.285 , pp. 13736-13741
    • Aramini, J.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.