메뉴 건너뛰기




Volumn 26, Issue 1, 2013, Pages 456-466

A new fault diagnosis method of multimode processes using Bayesian inference based Gaussian mixture contribution decomposition

Author keywords

Bayesian inference; Fault diagnosis; Gaussian mixture model; Multimode process; Multivariate contribution decomposition; Posterior probability

Indexed keywords

BAYESIAN INFERENCE; CHEMICAL PROCESS; FAULT DIAGNOSIS METHOD; GAUSSIAN CLUSTERS; GAUSSIAN MIXTURE MODEL; GAUSSIAN MIXTURES; GAUSSIAN MODES; MAHALANOBIS DISTANCES; MULTIMODES; MULTIVARIATE GAUSSIAN DISTRIBUTIONS; NON-GAUSSIAN PROCESS; OPERATING CONDITION; OPERATING DATA; OPERATING MODES; POSTERIOR PROBABILITY; STATISTICAL CONFIDENCE; TENNESSEE EASTMAN PROCESS; WEIGHTING FACTORS;

EID: 84870052903     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2012.09.003     Document Type: Article
Times cited : (58)

References (35)
  • 1
    • 52949138733 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of continuous wastewater treatment plants
    • D. Aguado, and C. Rosen Multivariate statistical monitoring of continuous wastewater treatment plants Eng. Appl. Artif. Intell. 21 2008 1080 1091
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , pp. 1080-1091
    • Aguado, D.1    Rosen, C.2
  • 2
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • B.R. Bakshi Multiscale PCA with application to multivariate statistical process monitoring AIChE J. 44 7 1998 1596 1610
    • (1998) AIChE J. , vol.44 , Issue.7 , pp. 1596-1610
    • Bakshi, B.R.1
  • 4
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
    • L. Chiang, E. Russell, and R. Braatz Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis Chemom. Intell. Lab. Syst. 50 2000 243 252
    • (2000) Chemom. Intell. Lab. Syst. , vol.50 , pp. 243-252
    • Chiang, L.1    Russell, E.2    Braatz, R.3
  • 6
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • S.W. Choi, J.H. Park, and I.B. Lee Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis Comput. Chem. Eng. 28 2004 1377 1387
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.B.3
  • 7
    • 0027561446 scopus 로고
    • Plant-wide industrial process control problem
    • J.J. Downs, and E.F. Vogel Plant-wide industrial process control problem Comput. Chem. Eng. 17 1993 245 255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 10
    • 0037394190 scopus 로고    scopus 로고
    • Monitoring independent components for fault detection
    • M. Kano, S. Tanaka, S. Hasebe, I. Hashimoto, and H. Ohno Monitoring independent components for fault detection AIChE J. 49 4 2003 969 976
    • (2003) AIChE J. , vol.49 , Issue.4 , pp. 969-976
    • Kano, M.1    Tanaka, S.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5
  • 11
  • 13
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • J.M. Lee, C.K. Yoo, and I.B. Lee Statistical process monitoring with independent component analysis J. Process Control 14 2004 467 485
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 15
    • 0029752880 scopus 로고    scopus 로고
    • A self-organizing network for hyperellipsoidal clustering (HEC)
    • J. Mao, and A.K. Jain A self-organizing network for hyperellipsoidal clustering (HEC) IEEE Trans. Neural Networks 7 1996 16 29
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 16-29
    • Mao, J.1    Jain, A.K.2
  • 16
    • 0028483476 scopus 로고
    • Monitoring of batch processes using multi-way principal component analysis
    • P. Nomikos, and J.F. MacGregor Monitoring of batch processes using multi-way principal component analysis AIChE J. 40 1994 1361 1375
    • (1994) AIChE J. , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 17
    • 0036804970 scopus 로고    scopus 로고
    • Multivariate statistics for process control
    • M. Piovoso, and K. Hoo Multivariate statistics for process control IEEE Control Syst. Mag. 22 2002 8 9
    • (2002) IEEE Control Syst. Mag. , vol.22 , pp. 8-9
    • Piovoso, M.1    Hoo, K.2
  • 18
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring basics and beyond
    • SJ. Qin Statistical process monitoring basics and beyond J. Chemom. 17 2003 480 502
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 19
    • 0030127409 scopus 로고    scopus 로고
    • Statistical process monitoring and disturbance diagnosis in multivariable continuous processes
    • A. Raich, and A. Çinar Statistical process monitoring and disturbance diagnosis in multivariable continuous processes AIChE J. 42 1996 995 1009
    • (1996) AIChE J. , vol.42 , pp. 995-1009
    • Raich, A.1    Çinar, A.2
  • 20
    • 84859903438 scopus 로고    scopus 로고
    • Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection
    • M. Rashid, and J. Yu Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection Ind. Eng. Chem. Res. 51 2012 5506 5514
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 5506-5514
    • Rashid, M.1    Yu, J.2
  • 21
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman challenge process
    • N.L. Ricker Decentralized control of the Tennessee Eastman challenge process J. Process Control 6 1996 205 221
    • (1996) J. Process Control , vol.6 , pp. 205-221
    • Ricker, N.L.1
  • 22
    • 0038046670 scopus 로고    scopus 로고
    • Monitoring transitions in chemical plants using enhanced trend analysis
    • A. Sundarraman, and R. Srinivasan Monitoring transitions in chemical plants using enhanced trend analysis Comput. Chem. Eng. 27 2003 1455 1472
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 1455-1472
    • Sundarraman, A.1    Srinivasan, R.2
  • 24
    • 0030530039 scopus 로고    scopus 로고
    • The process chemometrics approach to process monitoring and fault detection
    • B. Wise, and N. Gallagher The process chemometrics approach to process monitoring and fault detection J. Process Control 6 1996 329 348
    • (1996) J. Process Control , vol.6 , pp. 329-348
    • Wise, B.1    Gallagher, N.2
  • 25
    • 79958703777 scopus 로고    scopus 로고
    • Localized fisher discriminant analysis based complex chemical process monitoring
    • J. Yu Localized fisher discriminant analysis based complex chemical process monitoring AIChE J. 57 2011 1817 1828
    • (2011) AIChE J. , vol.57 , pp. 1817-1828
    • Yu, J.1
  • 26
    • 79952591121 scopus 로고    scopus 로고
    • Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis
    • J. Yu Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis Ind. Eng. Chem. Res. 50 2011 3390 3402
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 3390-3402
    • Yu, J.1
  • 27
    • 81055156706 scopus 로고    scopus 로고
    • A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
    • J. Yu A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes Chem. Eng. Sci. 68 2012 506 519
    • (2012) Chem. Eng. Sci. , vol.68 , pp. 506-519
    • Yu, J.1
  • 28
    • 84862799924 scopus 로고    scopus 로고
    • A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
    • J. Yu A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis J. Process Control 22 2012 778 788
    • (2012) J. Process Control , vol.22 , pp. 778-788
    • Yu, J.1
  • 29
    • 40749104269 scopus 로고    scopus 로고
    • Statistical MIMO controller performance monitoring. Part i Data driven covariance benchmark
    • J. Yu, and S.J. Qin Statistical MIMO controller performance monitoring. Part I Data driven covariance benchmark J. Process Control 18 2008 277 296
    • (2008) J. Process Control , vol.18 , pp. 277-296
    • Yu, J.1    Qin, S.J.2
  • 30
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • J. Yu, and S.J. Qin Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE J. 54 2008 1811 1829
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 31
    • 70749091622 scopus 로고    scopus 로고
    • Variance component analysis based fault diagnosis of multi-layer overlay lithography processes
    • J. Yu, and S.J. Qin Variance component analysis based fault diagnosis of multi-layer overlay lithography processes IIE Trans. 41 2009 764 775
    • (2009) IIE Trans. , vol.41 , pp. 764-775
    • Yu, J.1    Qin, S.J.2
  • 32
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • J. Yu, and S.J. Qin Multiway Gaussian mixture model based multiphase batch process monitoring Ind. Eng. Chem. Res. 48 2009 8585 8594
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2
  • 33
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction based fault identification using a combined index
    • H. Yue, and S.J. Qin Reconstruction based fault identification using a combined index Ind. Eng. Chem. Res. 40 2001 4403 4414
    • (2001) Ind. Eng. Chem. Res. , vol.40 , pp. 4403-4414
    • Yue, H.1    Qin, S.J.2
  • 34
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operating modes through multiple principal component analysis models
    • S.J. Zhao, J. Zhang, and Y.M. Xu Monitoring of processes with multiple operating modes through multiple principal component analysis models Ind. Eng. Chem. Res. 43 2004 7025 7035
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 35
    • 33646178973 scopus 로고    scopus 로고
    • Performance monitoring of processes with multiple operating modes through multiple PLS models
    • S.J. Zhao, J. Zhang, and Y.M. Xu Performance monitoring of processes with multiple operating modes through multiple PLS models J. Process Control 16 2006 763 772
    • (2006) J. Process Control , vol.16 , pp. 763-772
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.