-
1
-
-
33845665889
-
Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins
-
Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B, (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19: 555-562.
-
(2006)
Protein Eng Des Sel
, vol.19
, pp. 555-562
-
-
Stam, M.R.1
Danchin, E.G.J.2
Rancurel, C.3
Coutinho, P.M.4
Henrissat, B.5
-
2
-
-
0035022080
-
Regulation of the amylolytic and (hemi-)cellulolytic genes in aspergilli
-
Tsukagoshi N, Kobayashi T, Kato M, (2001) Regulation of the amylolytic and (hemi-)cellulolytic genes in aspergilli. J Gen Appl Microbiol 47: 1-19.
-
(2001)
J Gen Appl Microbiol
, vol.47
, pp. 1-19
-
-
Tsukagoshi, N.1
Kobayashi, T.2
Kato, M.3
-
3
-
-
0037187437
-
Properties and applications of starch-converting enzymes of the α-amylase family
-
van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L, (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94: 137-155.
-
(2002)
J Biotechnol
, vol.94
, pp. 137-155
-
-
van der Maarel, M.J.E.C.1
van der Veen, B.2
Uitdehaag, J.C.M.3
Leemhuis, H.4
Dijkhuizen, L.5
-
4
-
-
84856108818
-
Diversification of genes encoding granule-bound starch synthase in monocots and dicots is marked by multiple genome-wide duplication events
-
Cheng J, Khan MA, Qiu WM, Li J, Zhou H, et al. (2012) Diversification of genes encoding granule-bound starch synthase in monocots and dicots is marked by multiple genome-wide duplication events. PLoS ONE 7: e30088.
-
(2012)
PLoS ONE
, vol.7
-
-
Cheng, J.1
Khan, M.A.2
Qiu, W.M.3
Li, J.4
Zhou, H.5
-
5
-
-
84870645227
-
Fungal Enzymes: Present Scenario and Future Perspectives
-
Leitão AL, editor, Bussum: Bentham Science Publishers
-
Uma Maheswar Rao JL, Boorgula GDY, Leitão AL (2011) Fungal Enzymes: Present Scenario and Future Perspectives. In: Leitão AL, editor. Mycofactories. Bussum: Bentham Science Publishers 3-27.
-
(2011)
Mycofactories
, pp. 3-27
-
-
Uma Maheswar Rao, J.L.1
Boorgula, G.D.Y.2
Leitão, A.L.3
-
6
-
-
79957958102
-
Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88
-
Andersen MR, Salazar MP, Schaap PJ, van de Vondervoort PJ, Culley D, et al. (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21: 885-897.
-
(2011)
Genome Res
, vol.21
, pp. 885-897
-
-
Andersen, M.R.1
Salazar, M.P.2
Schaap, P.J.3
van de Vondervoort, P.J.4
Culley, D.5
-
7
-
-
79959214917
-
Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose
-
de Oliveira JM, van Passel MW, Schaap PJ, de Graaff LH, (2011) Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose. PLoS ONE 6: e20865.
-
(2011)
PLoS ONE
, vol.6
-
-
de Oliveira, J.M.1
van Passel, M.W.2
Schaap, P.J.3
de Graaff, L.H.4
-
8
-
-
33750466196
-
Expression profile of amylolytic genes in Aspergillus nidulans
-
Nakamura T, Maeda Y, Tanoue N, Makita T, Kato M, et al. (2006) Expression profile of amylolytic genes in Aspergillus nidulans. Biosci Biotechnol Biochem 70: 2363-2370.
-
(2006)
Biosci Biotechnol Biochem
, vol.70
, pp. 2363-2370
-
-
Nakamura, T.1
Maeda, Y.2
Tanoue, N.3
Makita, T.4
Kato, M.5
-
9
-
-
79958786854
-
Draft genome sequencing and comparative analysis of Aspergillus sojae NBRC4239
-
Sato A, Oshima K, Noguchi H, Ogawa M, Takahashi T, et al. (2011) Draft genome sequencing and comparative analysis of Aspergillus sojae NBRC4239. DNA Res 18: 165-176.
-
(2011)
DNA Res
, vol.18
, pp. 165-176
-
-
Sato, A.1
Oshima, K.2
Noguchi, H.3
Ogawa, M.4
Takahashi, T.5
-
10
-
-
44149100746
-
Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles
-
Yuan XL, van der Kaaij RM, van den Hondel CA, Punt PJ, van der Maarel MJ, et al. (2008) Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Mol Genet Genomics 279: 545-561.
-
(2008)
Mol Genet Genomics
, vol.279
, pp. 545-561
-
-
Yuan, X.L.1
van der Kaaij, R.M.2
van den Hondel, C.A.3
Punt, P.J.4
van der Maarel, M.J.5
-
11
-
-
33947693407
-
Genomics of Aspergillus oryzae
-
Kobayashi T, Abe K, Asai K, Gomi K, Juvvadi PR, et al. (2007) Genomics of Aspergillus oryzae. Biosci Biotechnol Biochem 71: 646-670.
-
(2007)
Biosci Biotechnol Biochem
, vol.71
, pp. 646-670
-
-
Kobayashi, T.1
Abe, K.2
Asai, K.3
Gomi, K.4
Juvvadi, P.R.5
-
12
-
-
58149200943
-
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics
-
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, et al. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37: D233-D238.
-
(2009)
Nucleic Acids Res
, vol.37
-
-
Cantarel, B.L.1
Coutinho, P.M.2
Rancurel, C.3
Bernard, T.4
Lombard, V.5
-
13
-
-
37449025531
-
Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal α-amylase enzymes
-
van der Kaaij RM, Janeček Š, van der Maarel MJEC, Dijkhuizen L, (2007) Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal α-amylase enzymes. Microbiology 153: 4003-4015.
-
(2007)
Microbiology
, vol.153
, pp. 4003-4015
-
-
van der Kaaij, R.M.1
Janeček, Š.2
van der Maarel, M.J.E.C.3
Dijkhuizen, L.4
-
14
-
-
84859423171
-
Identification and phylogenetic characterization of a new subfamily of α-amylase enzymes from marine microorganisms
-
Liu Y, Lei Y, Zhang X, Gao Y, Xiao Y, et al. (2012) Identification and phylogenetic characterization of a new subfamily of α-amylase enzymes from marine microorganisms. Mar Biotechnol 14: 253-260.
-
(2012)
Mar Biotechnol
, vol.14
, pp. 253-260
-
-
Liu, Y.1
Lei, Y.2
Zhang, X.3
Gao, Y.4
Xiao, Y.5
-
15
-
-
0345526382
-
Fungal morphology and metabolite production in submerged mycelial processes
-
Papagianni M, (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22: 189-259.
-
(2004)
Biotechnol Adv
, vol.22
, pp. 189-259
-
-
Papagianni, M.1
-
16
-
-
84866630737
-
In silico identification of catalytic residues and domain fold of the family GH119 sharing the catalytic machinery with the alpha-amylase family GH57
-
Janeček Š, Kuchtová A (2012) In silico identification of catalytic residues and domain fold of the family GH119 sharing the catalytic machinery with the alpha-amylase family GH57. FEBS Lett: http://dx.doi.org/10.1016/j.febslet.2012.1007.1020.
-
(2012)
FEBS Lett
-
-
Janeček, Š.1
Kuchtová, A.2
-
17
-
-
84860839630
-
Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57
-
Blesák K, Janeček Š, (2012) Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57. Extremophiles 16: 497-506.
-
(2012)
Extremophiles
, vol.16
, pp. 497-506
-
-
Blesák, K.1
Janeček, Š.2
-
18
-
-
0035831255
-
Relationship of sequence and structure to specificity in the α-amylase family of enzymes
-
MacGregor EA, Janeček Š, Svensson B, (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. BBA- Protein Struct Mol Enzymol 1546: 1-20.
-
(2001)
BBA - Protein Struct Mol Enzymol
, vol.1546
, pp. 1-20
-
-
MacGregor, E.A.1
Janeček, Š.2
Svensson, B.3
-
19
-
-
0012286188
-
How many conserved sequence regions are there in the α-amylase family?
-
Janeček Š, (2002) How many conserved sequence regions are there in the α-amylase family? Biologia 57: 29-41.
-
(2002)
Biologia
, vol.57
, pp. 29-41
-
-
Janeček, Š.1
-
20
-
-
0030778420
-
α-Amylase family: molecular biology and evolution
-
Janeček Š, (1997) α-Amylase family: molecular biology and evolution. Prog Biophys Mol Biol 67: 67-97.
-
(1997)
Prog Biophys Mol Biol
, vol.67
, pp. 67-97
-
-
Janeček, Š.1
-
21
-
-
1642458395
-
Horizontal gene transfer from Eukarya to Bacteria and domain shuffling: the α-amylase model
-
Da Lage JL, Feller G, Janeček Š, (2004) Horizontal gene transfer from Eukarya to Bacteria and domain shuffling: the α-amylase model. Cell Mol Life Sci 61: 97-109.
-
(2004)
Cell Mol Life Sci
, vol.61
, pp. 97-109
-
-
Da Lage, J.L.1
Feller, G.2
Janeček, Š.3
-
22
-
-
0028021627
-
Sequence similarities and evolutionary relationships of microbial, plant and animal α-amylases
-
Janeček Š, (1994) Sequence similarities and evolutionary relationships of microbial, plant and animal α-amylases. Eur J Biochem 224: 519-524.
-
(1994)
Eur J Biochem
, vol.224
, pp. 519-524
-
-
Janeček, Š.1
-
23
-
-
0034731427
-
Glucoamylase: structure/function relationships, and protein engineering
-
Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, et al. (2000) Glucoamylase: structure/function relationships, and protein engineering. BBA-Protein Struct Mol Enzymol 1543: 275-293.
-
(2000)
BBA-Protein Struct Mol Enzymol
, vol.1543
, pp. 275-293
-
-
Sauer, J.1
Sigurskjold, B.W.2
Christensen, U.3
Frandsen, T.P.4
Mirgorodskaya, E.5
-
25
-
-
0030729996
-
Glucoamylase structural, functional, and evolutionary relationships
-
Coutinho PM, Reilly PJ, (1997) Glucoamylase structural, functional, and evolutionary relationships. Protein Struct Funct Bioinform 29: 334-347.
-
(1997)
Protein Struct Funct Bioinform
, vol.29
, pp. 334-347
-
-
Coutinho, P.M.1
Reilly, P.J.2
-
26
-
-
0037436378
-
Crystal structure and evolution of a prokaryotic glucoamylase
-
Aleshin AE, Feng P-H, Honzatko RB, Reilly PJ, (2003) Crystal structure and evolution of a prokaryotic glucoamylase. J Mol Biol 327: 61-73.
-
(2003)
J Mol Biol
, vol.327
, pp. 61-73
-
-
Aleshin, A.E.1
Feng, P.-H.2
Honzatko, R.B.3
Reilly, P.J.4
-
27
-
-
0031342633
-
Comparison of two glucoamylases produced by Aspergillus oryzae in solid-state culture (koji) and in submerged culture
-
Hata Y, Ishida H, Kojima Y, Ichikawa E, Kawato A, et al. (1997) Comparison of two glucoamylases produced by Aspergillus oryzae in solid-state culture (koji) and in submerged culture. J Ferment Bioeng 84: 532-537.
-
(1997)
J Ferment Bioeng
, vol.84
, pp. 532-537
-
-
Hata, Y.1
Ishida, H.2
Kojima, Y.3
Ichikawa, E.4
Kawato, A.5
-
28
-
-
84862831192
-
Genomic characteristics comparisons of 12 food-related filamentous fungi in tRNA gene set, codon usage and amino acid composition
-
Chen W, Xie T, Shao Y, Chen F, (2012) Genomic characteristics comparisons of 12 food-related filamentous fungi in tRNA gene set, codon usage and amino acid composition. Gene 497: 116-124.
-
(2012)
Gene
, vol.497
, pp. 116-124
-
-
Chen, W.1
Xie, T.2
Shao, Y.3
Chen, F.4
-
29
-
-
3342970233
-
Amylolytic enzymes: their specificities, origins and properties
-
Horváthová V, Janeček Š, Šturdík E, (2001) Amylolytic enzymes: their specificities, origins and properties. Biologia 56: 605-615.
-
(2001)
Biologia
, vol.56
, pp. 605-615
-
-
Horváthová, V.1
Janeček, Š.2
Šturdík, E.3
-
30
-
-
33745048293
-
Structure of the sulfolobus solfataricus α-glucosidase: implications for domain conservation and substrate recognition in GH31
-
Ernst HA, Lo Leggio L, Willemoës M, Leonard G, Blum P, et al. (2006) Structure of the sulfolobus solfataricus α-glucosidase: implications for domain conservation and substrate recognition in GH31. J Mol Biol 358: 1106-1124.
-
(2006)
J Mol Biol
, vol.358
, pp. 1106-1124
-
-
Ernst, H.A.1
Lo Leggio, L.2
Willemoës, M.3
Leonard, G.4
Blum, P.5
-
32
-
-
79951676654
-
Characterization of maltase clusters in the genus Drosophila
-
Gabriško M, Janeček Š, (2011) Characterization of maltase clusters in the genus Drosophila. J Mol Evol 72: 104-118.
-
(2011)
J Mol Evol
, vol.72
, pp. 104-118
-
-
Gabriško, M.1
Janeček, Š.2
-
33
-
-
33947530379
-
A remote but significant sequence homology between glycoside hydrolase clan GH-H and family GH31
-
Janeček Š, Svensson B, MacGregor EA, (2007) A remote but significant sequence homology between glycoside hydrolase clan GH-H and family GH31. FEBS Lett 581: 1261-1268.
-
(2007)
FEBS Lett
, vol.581
, pp. 1261-1268
-
-
Janeček, Š.1
Svensson, B.2
MacGregor, E.A.3
-
34
-
-
0037125202
-
Iterative database searches demonstrate that glycoside hydrolase families 27, 31, 36 and 66 share a common evolutionary origin with family 13
-
Rigden DJ, (2002) Iterative database searches demonstrate that glycoside hydrolase families 27, 31, 36 and 66 share a common evolutionary origin with family 13. FEBS Lett 523: 17-22.
-
(2002)
FEBS Lett
, vol.523
, pp. 17-22
-
-
Rigden, D.J.1
-
35
-
-
33750979827
-
The evolution of putative starch-binding domains
-
Machovič M, Janeček Š, (2006) The evolution of putative starch-binding domains. FEBS Lett 580: 6349-6356.
-
(2006)
FEBS Lett
, vol.580
, pp. 6349-6356
-
-
Machovič, M.1
Janeček, Š.2
-
36
-
-
0037293103
-
Relation between domain evolution, specificity, and taxonomy of the α-amylase family members containing a C-terminal starch-binding domain
-
Janeček Š, Svensson B, MacGregor EA, (2003) Relation between domain evolution, specificity, and taxonomy of the α-amylase family members containing a C-terminal starch-binding domain. Eur J Biochem 270: 635-645.
-
(2003)
Eur J Biochem
, vol.270
, pp. 635-645
-
-
Janeček, Š.1
Svensson, B.2
MacGregor, E.A.3
-
37
-
-
69449083006
-
The carbohydrate-binding module family 20-diversity, structure, and function
-
Christiansen C, Abou Hachem M, Janeček Š, Viksø-Nielsen A, Blennow A, et al. (2009) The carbohydrate-binding module family 20-diversity, structure, and function. FEBS J 276: 5006-5029.
-
(2009)
FEBS J
, vol.276
, pp. 5006-5029
-
-
Christiansen, C.1
Abou Hachem, M.2
Janeček, Š.3
Viksø-Nielsen, A.4
Blennow, A.5
-
39
-
-
84998464393
-
Rhizopus raw-starch-degrading glucoamylase: its cloning and expression in yeast
-
Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, et al. (1986) Rhizopus raw-starch-degrading glucoamylase: its cloning and expression in yeast. Agric Biol Chem 50: 957-964.
-
(1986)
Agric Biol Chem
, vol.50
, pp. 957-964
-
-
Ashikari, T.1
Nakamura, N.2
Tanaka, Y.3
Kiuchi, N.4
Shibano, Y.5
-
40
-
-
80054683038
-
Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals
-
Janeček Š, Svensson B, MacGregor EA, (2011) Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb Technol 49: 429-440.
-
(2011)
Enzyme Microb Technol
, vol.49
, pp. 429-440
-
-
Janeček, Š.1
Svensson, B.2
MacGregor, E.A.3
-
41
-
-
84864008607
-
Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose
-
Jiang T-Y, Ci Y-P, Chou W-I, Lee Y-C, Sun Y-J, et al. (2012) Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose. PLoS ONE 7: e41131.
-
(2012)
PLoS ONE
, vol.7
-
-
Jiang, T.-Y.1
Ci, Y.-P.2
Chou, W.-I.3
Lee, Y.-C.4
Sun, Y.-J.5
-
42
-
-
0344223437
-
The evolution of starch-binding domain
-
Janeček Š, Ševči{dotless}k J, (1999) The evolution of starch-binding domain. FEBS Lett 456: 119-125.
-
(1999)
FEBS Lett
, vol.456
, pp. 119-125
-
-
Janeček, Š.1
Ševčik, J.2
-
43
-
-
0041392967
-
Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the α-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera
-
Eksteen JM, van Rensburg P, Cordero Otero RR, Pretorius IS, (2003) Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the α-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol Bioeng 84: 639-646.
-
(2003)
Biotechnol Bioeng
, vol.84
, pp. 639-646
-
-
Eksteen, J.M.1
van Rensburg, P.2
Cordero Otero, R.R.3
Pretorius, I.S.4
-
44
-
-
0032102057
-
Ethanol production and fermentation characteristics of recombinant Saccharomyces cerevisiae strains grown on starch
-
Birol G, Önsan Zİ, Ki{dotless}rdar B, Oliver SG, (1998) Ethanol production and fermentation characteristics of recombinant Saccharomyces cerevisiae strains grown on starch. Enzyme Microb Technol 22: 672-677.
-
(1998)
Enzyme Microb Technol
, vol.22
, pp. 672-677
-
-
Birol, G.1
Önsan, Z.I.2
Kirdar, B.3
Oliver, S.G.4
-
45
-
-
1642398234
-
Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera
-
Knox AM, du Preez JC, Kilian SG, (2004) Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Enzyme Microb Technol 34: 453-460.
-
(2004)
Enzyme Microb Technol
, vol.34
, pp. 453-460
-
-
Knox, A.M.1
du Preez, J.C.2
Kilian, S.G.3
-
46
-
-
79960142083
-
Improved expression of Rhizopus oryzae α-amylase in the methylotrophic yeast Pichia pastoris
-
Li S, Sing S, Wang Z, (2011) Improved expression of Rhizopus oryzae α-amylase in the methylotrophic yeast Pichia pastoris. Protein Expr Purif 79: 142-148.
-
(2011)
Protein Expr Purif
, vol.79
, pp. 142-148
-
-
Li, S.1
Sing, S.2
Wang, Z.3
-
47
-
-
0000175478
-
Comparative production of alpha-amylase, glucoamylase and protein enrichment of raw and cooked cassava by Rhizopus strains in submerged and solid state fermentations
-
Soccol CR, Iloki I, Marin B, Raimbault M, (1994) Comparative production of alpha-amylase, glucoamylase and protein enrichment of raw and cooked cassava by Rhizopus strains in submerged and solid state fermentations. J Food Sci Technol 31: 320-323.
-
(1994)
J Food Sci Technol
, vol.31
, pp. 320-323
-
-
Soccol, C.R.1
Iloki, I.2
Marin, B.3
Raimbault, M.4
-
48
-
-
78651390306
-
Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level
-
Battaglia E, Benoit I, van den Brink J, Wiebenga A, Coutinho PM, et al. (2011) Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level. BMC Genomics 12: 38.
-
(2011)
BMC Genomics
, vol.12
, pp. 38
-
-
Battaglia, E.1
Benoit, I.2
van den Brink, J.3
Wiebenga, A.4
Coutinho, P.M.5
-
49
-
-
84869203411
-
Identification of the sequence motif of glycoside hydrolase 13 family members
-
Kumar V, (2011) Identification of the sequence motif of glycoside hydrolase 13 family members. Bioinformation 6: 61-63.
-
(2011)
Bioinformation
, vol.6
, pp. 61-63
-
-
Kumar, V.1
-
50
-
-
0346306302
-
The invariant residues in the α-amylase family: just the catalytic triad
-
Machovič M, Janeček Š, (2003) The invariant residues in the α-amylase family: just the catalytic triad. Biologia 58: 1127-1132.
-
(2003)
Biologia
, vol.58
, pp. 1127-1132
-
-
Machovič, M.1
Janeček, Š.2
-
51
-
-
77950595950
-
Analysis of the key active subsites of glycoside hydrolase 13 family members
-
Kumar V, (2010) Analysis of the key active subsites of glycoside hydrolase 13 family members. Carbohyd Res 345: 893-898.
-
(2010)
Carbohyd Res
, vol.345
, pp. 893-898
-
-
Kumar, V.1
-
52
-
-
78651285748
-
CDD: a Conserved Domain Database for the functional annotation of proteins
-
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, et al. (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39: D225-229.
-
(2011)
Nucleic Acids Res
, vol.39
-
-
Marchler-Bauer, A.1
Lu, S.2
Anderson, J.B.3
Chitsaz, F.4
Derbyshire, M.K.5
-
53
-
-
33749600412
-
Origin and evolution of the Amyrel gene in the α-amylase multigene family of Diptera
-
Maczkowiak F, Lage J-L, (2006) Origin and evolution of the Amyrel gene in the α-amylase multigene family of Diptera. Genetica 128: 145-158.
-
(2006)
Genetica
, vol.128
, pp. 145-158
-
-
Maczkowiak, F.1
Lage, J.-L.2
-
54
-
-
0346132715
-
Diversity and evolution of the α-amylase genes in animals
-
Da Lage JL, Van Wormhoudt A, Cariou ML, (2002) Diversity and evolution of the α-amylase genes in animals. Biologia 57: 181-189.
-
(2002)
Biologia
, vol.57
, pp. 181-189
-
-
Da Lage, J.L.1
Van Wormhoudt, A.2
Cariou, M.L.3
-
55
-
-
0032976301
-
The concept of the α-amylase family: structural similarity and common catalytic mechanism
-
Kuriki T, Imanaka T, (1999) The concept of the α-amylase family: structural similarity and common catalytic mechanism. J Biosci Bioeng 87: 557-565.
-
(1999)
J Biosci Bioeng
, vol.87
, pp. 557-565
-
-
Kuriki, T.1
Imanaka, T.2
-
56
-
-
0031972297
-
Plant α-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin
-
Frandsen TP, Svensson B, (1998) Plant α-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin. Plant Mol Biol 37: 1-13.
-
(1998)
Plant Mol Biol
, vol.37
, pp. 1-13
-
-
Frandsen, T.P.1
Svensson, B.2
-
57
-
-
33845498615
-
Starch-binding domains in the post-genome era
-
Machovič M, Janeček Š, (2006) Starch-binding domains in the post-genome era. Cell Mol Life Sci 63: 2710-2724.
-
(2006)
Cell Mol Life Sci
, vol.63
, pp. 2710-2724
-
-
Machovič, M.1
Janeček, Š.2
-
58
-
-
27644529698
-
A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21
-
Machovič M, Svensson B, Ann MacGregor E, Janeček Š, (2005) A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. FEBS J 272: 5497-5513.
-
(2005)
FEBS J
, vol.272
, pp. 5497-5513
-
-
Machovič, M.1
Svensson, B.2
Ann MacGregor, E.3
Janeček, Š.4
-
59
-
-
33744986320
-
The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding
-
Chou WI, Pai TW, Liu SH, Hsiung BK, Chang MD, (2006) The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J 396: 469-477.
-
(2006)
Biochem J
, vol.396
, pp. 469-477
-
-
Chou, W.I.1
Pai, T.W.2
Liu, S.H.3
Hsiung, B.K.4
Chang, M.D.5
-
60
-
-
0034283404
-
New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading
-
Sumitani J, Tottori T, Kawaguchi T, Arai M, (2000) New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading. Biochem J 350 Pt 2: 477-484.
-
(2000)
Biochem J
, vol.350
, Issue.Pt 2
, pp. 477-484
-
-
Sumitani, J.1
Tottori, T.2
Kawaguchi, T.3
Arai, M.4
-
61
-
-
57349180133
-
Domain evolution in the GH13 pullulanase subfamily with focus on the carbohydrate-binding module family 48
-
Machovič M, Janeček Š, (2008) Domain evolution in the GH13 pullulanase subfamily with focus on the carbohydrate-binding module family 48. Biologia 63: 1057-1068.
-
(2008)
Biologia
, vol.63
, pp. 1057-1068
-
-
Machovič, M.1
Janeček, Š.2
-
62
-
-
67649327176
-
FastTree: computing large minimum evolution trees with profiles instead of a distance matrix
-
Price MN, Dehal PS, Arkin AP, (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26: 1641-1650.
-
(2009)
Mol Biol Evol
, vol.26
, pp. 1641-1650
-
-
Price, M.N.1
Dehal, P.S.2
Arkin, A.P.3
-
63
-
-
33845873289
-
Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation
-
Letunic I, Bork P, (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23: 127-128.
-
(2007)
Bioinformatics
, vol.23
, pp. 127-128
-
-
Letunic, I.1
Bork, P.2
-
64
-
-
65449188232
-
Jalview Version 2-a multiple sequence alignment editor and analysis workbench
-
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ, (2009) Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191.
-
(2009)
Bioinformatics
, vol.25
, pp. 1189-1191
-
-
Waterhouse, A.M.1
Procter, J.B.2
Martin, D.M.A.3
Clamp, M.4
Barton, G.J.5
|