메뉴 건너뛰기




Volumn 7632 LNBI, Issue , 2012, Pages 59-70

A unified adaptive co-identification framework for high-D expression data

Author keywords

[No Author keywords available]

Indexed keywords

ARABIDOPSIS; CO-CLUSTERING; COMPUTATIONAL FRAMEWORK; DATA SETS; DEVELOPMENT STAGES; EXPRESSION DATA; GENE EXPRESSION DATA; GENERIC OPTIMIZATION; HIGH-DIMENSIONAL; HIGH-THROUGHPUT TECHNIQUE; OPTIMIZATION METHOD; TESTING RESULTS;

EID: 84868708561     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-34123-6_6     Document Type: Conference Paper
Times cited : (5)

References (41)
  • 1
    • 27544440058 scopus 로고    scopus 로고
    • Shifting and scaling patterns from gene expression data
    • Aguilar-Ruiz, J.S.: Shifting and scaling patterns from gene expression data. Bioinformatics 21, 3840-3845 (2005)
    • (2005) Bioinformatics , vol.21 , pp. 3840-3845
    • Aguilar-Ruiz, J.S.1
  • 2
    • 34548691246 scopus 로고    scopus 로고
    • A generalized maximum entropy approach to bregman coclustering and matrix approximation
    • Banerjee, A., et al.: A generalized maximum entropy approach to bregman coclustering and matrix approximation. JMLR 8, 1919-1986 (2007)
    • (2007) JMLR , vol.8 , pp. 1919-1986
    • Banerjee, A.1
  • 3
    • 0036375743 scopus 로고    scopus 로고
    • Discovering local structure in gene expression data: The order-preserving submatrix problem
    • Ben-Dor, A., et al.: Discovering local structure in gene expression data: the order-preserving submatrix problem. In: RECOMB 2002, pp. 49-57 (2002)
    • (2002) RECOMB 2002 , pp. 49-57
    • Ben-Dor, A.1
  • 4
    • 84868707823 scopus 로고    scopus 로고
    • A stability based method for discovering structure in clustered data
    • Ben-Hur, A., et al.: A stability based method for discovering structure in clustered data. In: Proc. of PSB (2002)
    • Proc. of PSB (2002)
    • Ben-Hur, A.1
  • 6
    • 84861636156 scopus 로고    scopus 로고
    • Maximum block improvement and polynomial optimization
    • Chen, B., et al.: Maximum block improvement and polynomial optimization. SIAM Journal on Optimization 22, 87-107 (2012)
    • (2012) SIAM Journal on Optimization , vol.22 , pp. 87-107
    • Chen, B.1
  • 8
    • 33847229125 scopus 로고    scopus 로고
    • Molecular targets in gynaecological cancers
    • Cheung, A.N.: Molecular targets in gynaecological cancers. Pathology 39, 26-45 (2007)
    • (2007) Pathology , vol.39 , pp. 26-45
    • Cheung, A.N.1
  • 9
    • 2942588999 scopus 로고    scopus 로고
    • Minimum sum-squared residue co-clustering of gene expression data
    • Cho, H., et al.: Minimum sum-squared residue co-clustering of gene expression data. In: Proc. SIAM on Data Mining, pp. 114-125 (2004)
    • (2004) Proc. SIAM on Data Mining , pp. 114-125
    • Cho, H.1
  • 10
    • 11344295027 scopus 로고    scopus 로고
    • Comparative analysis of clustering methods for gene expression time course data
    • Costa, I.G., et al.: Comparative analysis of clustering methods for gene expression time course data. Genet. Mol. Biol. 27, 623-631 (2004)
    • (2004) Genet. Mol. Biol. , vol.27 , pp. 623-631
    • Costa, I.G.1
  • 12
    • 28644449917 scopus 로고    scopus 로고
    • How does gene expression clustering work?
    • D'haeseleer, P.: How does gene expression clustering work? Nature Biotechnology 23, 1499-1501 (2005)
    • (2005) Nature Biotechnology , vol.23 , pp. 1499-1501
    • D'Haeseleer, P.1
  • 14
    • 0037172724 scopus 로고    scopus 로고
    • A prediction based resampling method for estimating the number of clusters in a data set
    • Dudoit, S., Fridlyand, J.: A prediction based resampling method for estimating the number of clusters in a data set. Genome Biology 3, 1-21 (2002)
    • (2002) Genome Biology , vol.3 , pp. 1-21
    • Dudoit, S.1    Fridlyand, J.2
  • 15
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen, M.B., et al.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95, 14863-14868 (1998)
    • (1998) Proc. Natl. Acad. Sci. , vol.95 , pp. 14863-14868
    • Eisen, M.B.1
  • 16
    • 0036798238 scopus 로고    scopus 로고
    • Judging the quality of gene expression-based clustering methods using gene annotation
    • Gibbons, F.D., Roth, F.P.: Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res. 12, 1574-1581 (2002)
    • (2002) Genome Res. , vol.12 , pp. 1574-1581
    • Gibbons, F.D.1    Roth, F.P.2
  • 17
    • 77954206273 scopus 로고    scopus 로고
    • FABIA: Factor analysis for bicluster acquisition
    • Hochreiter, S., et al.: FABIA: factor analysis for bicluster acquisition. Bioinformatics 26, 1520-1527 (2010)
    • (2010) Bioinformatics , vol.26 , pp. 1520-1527
    • Hochreiter, S.1
  • 18
    • 34247200577 scopus 로고    scopus 로고
    • The AtGenExpress global stress expression data set: Protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses
    • Kilian, J., et al.: The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. The Plant Journal 2, 347-363 (2007)
    • (2007) The Plant Journal , vol.2 , pp. 347-363
    • Kilian, J.1
  • 19
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review 51, 455-500 (2009)
    • (2009) SIAM Review , vol.51 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 20
    • 77952042297 scopus 로고    scopus 로고
    • Approximation Algorithms for Tensor Clustering
    • Gavalda, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. Springer, Heidelberg
    • Jegelka, S., Sra, S., Banerjee, A.: Approximation Algorithms for Tensor Clustering. In: Gavalda, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 368-383. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5809 , pp. 368-383
    • Jegelka, S.1    Sra, S.2    Banerjee, A.3
  • 21
    • 12244250138 scopus 로고    scopus 로고
    • Mining coherent gene clusters from gene-sample-time microarray data
    • Jiang, D., et al.: Mining coherent gene clusters from gene-sample-time microarray data. In: Proc. ACM SIGKDD, pp. 430-439 (2004)
    • (2004) Proc. ACM SIGKDD , pp. 430-439
    • Jiang, D.1
  • 22
    • 0034144758 scopus 로고    scopus 로고
    • A multilinear singular value decomposition
    • Lathauwer, D., et al.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253-1278 (2000)
    • (2000) SIAM J. Matrix Anal. Appl. , vol.21 , pp. 1253-1278
    • Lathauwer, D.1
  • 23
    • 0036012349 scopus 로고    scopus 로고
    • Plaid models for gene expression data
    • Lazzeroni, L., Owen, A.B.: Plaid models for gene expression data. Statistica Sinica 12, 61-86 (2002)
    • (2002) Statistica Sinica , vol.12 , pp. 61-86
    • Lazzeroni, L.1    Owen, A.B.2
  • 24
    • 78650059908 scopus 로고    scopus 로고
    • Biclustering via Sparse Singular Value Decomposition
    • Lee, M., et al.: Biclustering via Sparse Singular Value Decomposition. Biometrics 66, 1087-1095 (2010)
    • (2010) Biometrics , vol.66 , pp. 1087-1095
    • Lee, M.1
  • 25
    • 79951766508 scopus 로고    scopus 로고
    • An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation
    • Li, A., Tuck, D.: An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation. Gene Regulation and Systems Biology 3, 49-64 (2009)
    • (2009) Gene Regulation and Systems Biology , vol.3 , pp. 49-64
    • Li, A.1    Tuck, D.2
  • 27
    • 36749082353 scopus 로고    scopus 로고
    • cDNA microarrays: Identification of gene signatures and their application in clinical practice
    • Magic, Z., et al.: cDNA microarrays: identification of gene signatures and their application in clinical practice. J. BUON 12(suppl.1), S39-S44 (2007)
    • (2007) J. BUON , vol.12 , Issue.SUPPL. 1
    • Magic, Z.1
  • 28
    • 0041627879 scopus 로고    scopus 로고
    • Extracting conserved gene expression motifs from gene expression data
    • Murali, T., Kasif, S.: Extracting conserved gene expression motifs from gene expression data. In: Pacific Symposium on Biocomputing, vol. 8, pp. 77-88 (2003)
    • (2003) Pacific Symposium on Biocomputing , vol.8 , pp. 77-88
    • Murali, T.1    Kasif, S.2
  • 29
    • 33646137384 scopus 로고    scopus 로고
    • A systematic comparison and evaluation of biclustering methods for gene expression data
    • Prelic, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 1122-1129 (2006)
    • (2006) Bioinformatics , vol.22 , pp. 1122-1129
    • Prelic, A.1
  • 30
    • 85037545106 scopus 로고    scopus 로고
    • Unsupervised Induction of Modern Standard Arabic Verb Classes
    • New York
    • Snider, N., Diab, M.: Unsupervised Induction of Modern Standard Arabic Verb Classes. In: HLT-NAACL, New York (2006)
    • (2006) HLT-NAACL
    • Snider, N.1    Diab, M.2
  • 31
    • 35748953576 scopus 로고    scopus 로고
    • A Two-Step Clustering for 3-D Gene Expression Data Reveals the Main Features of the Arabidopsis Stress Response
    • Strauch, M., et al.: A Two-Step Clustering for 3-D Gene Expression Data Reveals the Main Features of the Arabidopsis Stress Response. J. Integrative Bioinformatics 4, 54-66 (2007)
    • (2007) J. Integrative Bioinformatics , vol.4 , pp. 54-66
    • Strauch, M.1
  • 32
    • 35748941236 scopus 로고    scopus 로고
    • EDISA: Extracting biclusters from multiple time-series of gene expression profiles
    • Supper, J., et al.: EDISA: extracting biclusters from multiple time-series of gene expression profiles. BMC Bioinformatics 8, 334-347 (2007)
    • (2007) BMC Bioinformatics , vol.8 , pp. 334-347
    • Supper, J.1
  • 33
    • 1542380037 scopus 로고    scopus 로고
    • Toxicogenomics in predictive toxicology in drug development
    • Suter, L., et al.: Toxicogenomics in predictive toxicology in drug development. Chem. Biol. 11, 161-171 (2004)
    • (2004) Chem. Biol. , vol.11 , pp. 161-171
    • Suter, L.1
  • 34
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • Tamayo, P., et al.: Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907-2912 (1999)
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 2907-2912
    • Tamayo, P.1
  • 35
    • 0033028596 scopus 로고    scopus 로고
    • Systematic determination of genetic network architecture
    • Tavazoie, S., et al.: Systematic determination of genetic network architecture. Nat. Genet. 22, 281-285 (1999)
    • (1999) Nat. Genet. , vol.22 , pp. 281-285
    • Tavazoie, S.1
  • 36
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279-311 (1966)
    • (1966) Psychometrika , vol.31 , pp. 279-311
    • Tucker, L.R.1
  • 37
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the Number of Clusters in a Dataset via the Gap Statistic
    • Tibshirani, R., et al.: Estimating the Number of Clusters in a Dataset via the Gap Statistic. J. Royal Stat. Soc. B 63, 411-423 (2001)
    • (2001) J. Royal Stat. Soc. B , vol.63 , pp. 411-423
    • Tibshirani, R.1
  • 38
    • 85085674656 scopus 로고    scopus 로고
    • Clustering by pattern similarity in large data sets
    • Wang, H., et al.: Clustering by pattern similarity in large data sets. In: Proc. KDD 2002, pp. 394-405 (2002)
    • (2002) Proc. KDD 2002 , pp. 394-405
    • Wang, H.1
  • 39
    • 33749620002 scopus 로고    scopus 로고
    • Mining shifting-and-scaling co-regulation patterns on gene expression profiles
    • Xu, X., et al.: Mining shifting-and-scaling co-regulation patterns on gene expression profiles. In: Proc. ICDE 2006, pp. 89-98 (2006)
    • (2006) Proc. ICDE 2006 , pp. 89-98
    • Xu, X.1
  • 40
    • 80455173664 scopus 로고    scopus 로고
    • A New Framework for Co-clustering of Gene Expression Data
    • Loog, M., Wessels, L., Reinders, M.J.T., de Ridder, D. (eds.) PRIB 2011. Springer, Heidelberg
    • Zhang, S., Wang, K., Chen, B., Huang, X.: A New Framework for Co-clustering of Gene Expression Data. In: Loog, M., Wessels, L., Reinders, M.J.T., de Ridder, D. (eds.) PRIB 2011. LNCS, vol. 7036, pp. 1-12. Springer, Heidelberg (2011)
    • (2011) LNCS , vol.7036 , pp. 1-12
    • Zhang, S.1    Wang, K.2    Chen, B.3    Huang, X.4
  • 41
    • 29844442223 scopus 로고    scopus 로고
    • Tricluster: An effective algorithm for mining coherent clusters in 3D microarray data
    • Zhao, L., Zaki, M.J.: Tricluster: an effective algorithm for mining coherent clusters in 3D microarray data. In: Proc. ACM SIGMOD, pp. 694-705 (2005)
    • (2005) Proc. ACM SIGMOD , pp. 694-705
    • Zhao, L.1    Zaki, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.