-
1
-
-
0035370926
-
Relative loss bounds for on-line density estimation with the exponential family of distributions
-
K. S. Azoury and M. K. Warmuth. Relative loss bounds for on-line density estimation with the exponential family of distributions. Machine Learning, 43(3):211-246, 2001.
-
(2001)
Machine Learning
, vol.43
, Issue.3
, pp. 211-246
-
-
Azoury, K.S.1
Warmuth, M.K.2
-
2
-
-
23744473964
-
On the optimality of conditional expectation as a Bregman predictor
-
July
-
A. Banerjee, X. Guo, and H. Wang. On the optimality of conditional expectation as a Bregman predictor. IEEE Transactions on Information Theory, 51(7):2664-2669, July 2005a.
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, Issue.7
, pp. 2664-2669
-
-
Banerjee, A.1
Guo, X.2
Wang, H.3
-
3
-
-
26244461684
-
Clustering with Bregman divergences
-
A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Clustering with Bregman divergences. Journal of Machine Learning Research, 6:1705-1749, 2005b.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1705-1749
-
-
Banerjee, A.1
Merugu, S.2
Dhillon, I.3
Ghosh, J.4
-
4
-
-
21744459385
-
Legendre functions and the method of random Bregman projections
-
H. H. Bauschke and J. M. Borowein. Legendre functions and the method of random Bregman projections. Journal of Convex Analysis, 4(1):27-67, 1997.
-
(1997)
Journal of Convex Analysis
, vol.4
, Issue.1
, pp. 27-67
-
-
Bauschke, H.H.1
Borowein, J.M.2
-
6
-
-
49949144765
-
The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
-
L. M. Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Physics, 7:200-217, 1967.
-
(1967)
USSR Computational Mathematics and Physics
, vol.7
, pp. 200-217
-
-
Bregman, L.M.1
-
7
-
-
33646799799
-
Unsupervised auditory scene categorization via key audio effects and information-theoretic co-clustering
-
R. Cai, L. Lu, and L. Cai. Unsupervised auditory scene categorization via key audio effects and information-theoretic co-clustering. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP05), pages 1073-1076, 2005.
-
(2005)
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP05)
, pp. 1073-1076
-
-
Cai, R.1
Lu, L.2
Cai, L.3
-
8
-
-
35048818727
-
Clustering of bipartite advertiser-keyword graph
-
J. J. M. Carrasco, D. Fain, K. Lang, and L. Zhukov. Clustering of bipartite advertiser-keyword graph. In Proceedings of the Workshop on Large Scale Clustering, ICDM, 2003.
-
(2003)
Proceedings of the Workshop on Large Scale Clustering, ICDM
-
-
Carrasco, J.J.M.1
Fain, D.2
Lang, K.3
Zhukov, L.4
-
10
-
-
12244296737
-
Fully automatic cross-associations
-
D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully automatic cross-associations. In Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD), pages 79-88, 2004.
-
(2004)
Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD)
, pp. 79-88
-
-
Chakrabarti, D.1
Papadimitriou, S.2
Modha, D.S.3
Faloutsos, C.4
-
12
-
-
2942588999
-
Minimum sum-squared residue co-clustering of gene expression data
-
H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared residue co-clustering of gene expression data. In Proceedings of the 4th SIAM International Conference on Data Mining (SDM), pages 114-125, 2004.
-
(2004)
Proceedings of the 4th SIAM International Conference on Data Mining (SDM)
, pp. 114-125
-
-
Cho, H.1
Dhillon, I.S.2
Guan, Y.3
Sra, S.4
-
13
-
-
0001087620
-
Logistic regression, adaboost and bregman distances
-
M. Collins, R. E. Schapire, and Y Singer. Logistic regression, adaboost and bregman distances. In Proceedings of the 13th Annual Conference on Computational Learing Theory (COLT), pages 158-169, 2000.
-
(2000)
Proceedings of the 13th Annual Conference on Computational Learing Theory (COLT)
, pp. 158-169
-
-
Collins, M.1
Schapire, R.E.2
Singer, Y.3
-
15
-
-
0025595687
-
Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems
-
I. Csiszár. Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. The Annals of Statistics, 19:2032-2066, 1991.
-
(1991)
The Annals of Statistics
, vol.19
, pp. 2032-2066
-
-
Csiszár, I.1
-
16
-
-
0004027463
-
Duality and auxiliary functions for Bregman distances
-
Technical Report CMU-CS-01-109, School of Computer Science, Carnegie Mellon University
-
S. Della Pietra, V. Della Pietra, and J. Lafferty. Duality and auxiliary functions for Bregman distances. Technical Report CMU-CS-01-109, School of Computer Science, Carnegie Mellon University, 2001.
-
(2001)
-
-
Della Pietra, S.1
Della Pietra, V.2
Lafferty, J.3
-
17
-
-
2942723846
-
A divisive information-theoretic feature clustering algorithm for text classification
-
I. Dhillon, S. Mallela, and R. Kumar. A divisive information-theoretic feature clustering algorithm for text classification. Journal of Machine Learning Research, 3(4): 1265-1287, 2003a.
-
(2003)
Journal of Machine Learning Research
, vol.3
, Issue.4
, pp. 1265-1287
-
-
Dhillon, I.1
Mallela, S.2
Kumar, R.3
-
20
-
-
0034824884
-
Concept decompositions for large sparse text data using clustering
-
January
-
I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering. Machine Learning, 42(1): 143-175, January 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.1
, pp. 143-175
-
-
Dhillon, I.S.1
Modha, D.S.2
-
21
-
-
33645103900
-
Trained named entity recognition using distributional clusters
-
D. Freitag. Trained named entity recognition using distributional clusters. In EMNLP, pages 262-269, 2004.
-
(2004)
EMNLP
, pp. 262-269
-
-
Freitag, D.1
-
22
-
-
32344447271
-
Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering
-
B. Gao, T. Liu, X. Zheng, Q. Cheng, and W. Ma. Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In Proceedings of the 11th International Conference on Knowledge Discovery and Data Mining (KDD), pages 41-50, 2005.
-
(2005)
Proceedings of the 11th International Conference on Knowledge Discovery and Data Mining (KDD)
, pp. 41-50
-
-
Gao, B.1
Liu, T.2
Zheng, X.3
Cheng, Q.4
Ma, W.5
-
24
-
-
2542613410
-
Scalable clustering
-
Nong Ye, editor, Lawrence Erlbaum Assoc
-
J. Ghosh. Scalable clustering. In Nong Ye, editor, The Handbook of Data Mining, pages 247-277. Lawrence Erlbaum Assoc., 2003.
-
(2003)
The Handbook of Data Mining
, pp. 247-277
-
-
Ghosh, J.1
-
25
-
-
34548695058
-
-
data set
-
GroupLens. Movielens data set. http://www.cs.umn.edu/Research/GroupLens/ data/ml-data.tar.gz.
-
Movielens
-
-
GroupLens1
-
26
-
-
6344274901
-
Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory
-
P. D. Grünwald and A. Dawid. Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory. Annals of Statistics, 32(4), 2004.
-
(2004)
Annals of Statistics
, vol.32
, Issue.4
-
-
Grünwald, P.D.1
Dawid, A.2
-
27
-
-
42749107856
-
Spectral images and features co-clustering with application to content-based image retrieval
-
J. Guan, G. Qiu, and X. Y. Xue. Spectral images and features co-clustering with application to content-based image retrieval. In IEEE Workshop on Multimedia Signal Processing, 2005.
-
(2005)
IEEE Workshop on Multimedia Signal Processing
-
-
Guan, J.1
Qiu, G.2
Xue, X.Y.3
-
29
-
-
3042742744
-
Latent semantic models for collaborative filtering
-
T. Hofmann. Latent semantic models for collaborative filtering. ACM Transactions on Information Systems, 22(1):89-115, 2004.
-
(2004)
ACM Transactions on Information Systems
, vol.22
, Issue.1
, pp. 89-115
-
-
Hofmann, T.1
-
30
-
-
0344031459
-
Unsupervised learning from dyadic data
-
TR-98-042, International Computer Science Institute ICSI, Berkeley
-
T. Hofmann and J. Puzicha. Unsupervised learning from dyadic data. Technical Report ICSI TR-98-042, International Computer Science Institute (ICSI), Berkeley, 1998.
-
(1998)
Technical Report ICSI
-
-
Hofmann, T.1
Puzicha, J.2
-
32
-
-
11944266539
-
Information theory and statistical mechanics
-
E. T. Jaynes. Information theory and statistical mechanics. Physical Reviews, 106:620-630, 1957.
-
(1957)
Physical Reviews
, vol.106
, pp. 620-630
-
-
Jaynes, E.T.1
-
33
-
-
0037399130
-
Spectral biclustering of microarray data: Coclustering genes and conditions
-
Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein. Spectral biclustering of microarray data: Coclustering genes and conditions. Genome Research, 13(4):703-716, 2003.
-
(2003)
Genome Research
, vol.13
, Issue.4
, pp. 703-716
-
-
Kluger, Y.1
Basri, R.2
Chang, J.T.3
Gerstein, M.4
-
36
-
-
85149113738
-
Word clustering and disambiguation based on co-occurence data
-
H. Li and N. Abe. Word clustering and disambiguation based on co-occurence data. In COLING-ACL, pages 749-755, 1998.
-
(1998)
COLING-ACL
, pp. 749-755
-
-
Li, H.1
Abe, N.2
-
38
-
-
6344233909
-
Finding haplotype tagging snps by use of principal components analysis
-
Z. Lin and R.B. Altman. Finding haplotype tagging snps by use of principal components analysis. The American Journal of Human Genetics, 75:850-861, 2004.
-
(2004)
The American Journal of Human Genetics
, vol.75
, pp. 850-861
-
-
Lin, Z.1
Altman, R.B.2
-
40
-
-
0031619277
-
Latent semantic indexing: A probabilistic analysis
-
C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic indexing: A probabilistic analysis. In Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 159-168, 1998.
-
(1998)
Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing (PODC)
, pp. 159-168
-
-
Papadimitriou, C.H.1
Raghavan, P.2
Tamaki, H.3
Vempala, S.4
-
41
-
-
17044376078
-
Subspace clustering for high dimensinal data: A review
-
L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensinal data: A review. ACM SIGKDD Explorations, 6(1):90-105, 2004.
-
(2004)
ACM SIGKDD Explorations
, vol.6
, Issue.1
, pp. 90-105
-
-
Parsons, L.1
Haque, E.2
Liu, H.3
-
43
-
-
85030174634
-
GroupLens: An Open Architecture for Collaborative Filtering of Netnews
-
P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In Proceedings of the ACM Conference on CSCW, pages 175-186, 1994.
-
(1994)
Proceedings of the ACM Conference on CSCW
, pp. 175-186
-
-
Resnick, P.1
Iacovou, N.2
Suchak, M.3
Bergstorm, P.4
Riedl, J.5
-
44
-
-
34548698558
-
-
R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, 1970.
-
R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, 1970.
-
-
-
-
46
-
-
0012972602
-
Application of dimensionality reduction in recommender systems - a case study
-
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recommender systems - a case study. In WebKDD Workshop., 2000.
-
(2000)
WebKDD Workshop
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
-
47
-
-
0018877134
-
Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross entropy
-
J. Shore and R. Johnson. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross entropy. IEEE Transactions on Information Theory, 26(1):26-37, 1980.
-
(1980)
IEEE Transactions on Information Theory
, vol.26
, Issue.1
, pp. 26-37
-
-
Shore, J.1
Johnson, R.2
-
48
-
-
0041965980
-
Cluster ensembles - a knowledge reuse framework for combining partitionings
-
A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining partitionings. Journal of Machine Learning Research, 3(3):583-617, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, Issue.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
|