메뉴 건너뛰기




Volumn , Issue , 2008, Pages 654-663

Hunting for coherent co-clusters in high dimensional and noisy datasets

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; COBALT; COBALT COMPOUNDS; INFORMATION MANAGEMENT; TECHNICAL PRESENTATIONS;

EID: 62449085111     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDMW.2008.20     Document Type: Conference Paper
Times cited : (3)

References (30)
  • 1
    • 34548691246 scopus 로고    scopus 로고
    • A generalized maximum entropy approach to bregman coclustering and matrix approximation
    • A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. Modha. A generalized maximum entropy approach to bregman coclustering and matrix approximation. JMLR, 8:1919-1986, 2007.
    • (2007) JMLR , vol.8 , pp. 1919-1986
    • Banerjee, A.1    Dhillon, I.2    Ghosh, J.3    Merugu, S.4    Modha, D.5
  • 3
    • 0036375743 scopus 로고    scopus 로고
    • Discovering local structure in gene expression data: The order-preserving submatrix problem
    • A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local structure in gene expression data: the order-preserving submatrix problem. In Proc. RECOMB'02, pages 49-57, 2002.
    • (2002) Proc. RECOMB'02 , pp. 49-57
    • Ben-Dor, A.1    Chor, B.2    Karp, R.3    Yakhini, Z.4
  • 6
    • 0034566393 scopus 로고    scopus 로고
    • Biclustering of expression data
    • Y. Cheng and G. M. Church. Biclustering of expression data. In Proc. ICMB'00, pages 93-103, 2000.
    • (2000) Proc. ICMB'00 , pp. 93-103
    • Cheng, Y.1    Church, G.M.2
  • 7
    • 49249096441 scopus 로고    scopus 로고
    • Co-clustering of human cancer microarrays using minimum sum-squared residue coclustering
    • H. Cho and I. Dhillon. Co-clustering of human cancer microarrays using minimum sum-squared residue coclustering. To appear in IEEE/ACM TCBB, 2008.
    • (2008) To appear in IEEE/ACM TCBB
    • Cho, H.1    Dhillon, I.2
  • 8
    • 14344258245 scopus 로고    scopus 로고
    • A needle in a haystack: Local one-class optimization
    • K. Crammer and G. Chechik. A needle in a haystack: Local one-class optimization. In Proc. ICML'04, 2004.
    • (2004) Proc. ICML'04
    • Crammer, K.1    Chechik, G.2
  • 9
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information-theoretic feature clustering algorithm for text classification
    • I. Dhillon, S. Mallela, and R. Kumar. A divisive information-theoretic feature clustering algorithm for text classification. JMLR, 3:1265-1287, 2003.
    • (2003) JMLR , vol.3 , pp. 1265-1287
    • Dhillon, I.1    Mallela, S.2    Kumar, R.3
  • 10
    • 77952375075 scopus 로고    scopus 로고
    • Information-theoretic co-clustering
    • I. Dhillon, S. Mallela, and D. Modha. Information-theoretic co-clustering. In Proc. KDD'03, pages 89-98, 2003.
    • (2003) Proc. KDD'03 , pp. 89-98
    • Dhillon, I.1    Mallela, S.2    Modha, D.3
  • 11
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • J. Dy and C. Brodley. Feature selection for unsupervised learning. JMLR, 5:845-889, 2004.
    • (2004) JMLR , vol.5 , pp. 845-889
    • Dy, J.1    Brodley, C.2
  • 12
    • 0000550189 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. KDD'96, 1996.
    • (1996) Proc. KDD'96
    • Ester, M.1    Kriegel, H.2    Sander, J.3    Xu, X.4
  • 13
    • 0033637153 scopus 로고    scopus 로고
    • Genomic expression program in the response of yeast cells to environmental changes
    • A. Gasch, P. Spellman, C. Kao, O. Carmel-Harel, et al. Genomic expression program in the response of yeast cells to environmental changes. Molecular Cell Biology, 11:4241-4257, 2000.
    • (2000) Molecular Cell Biology , vol.11 , pp. 4241-4257
    • Gasch, A.1    Spellman, P.2    Kao, C.3    Carmel-Harel, O.4
  • 14
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • G. J. Gordon, R. V. Jensen, L. Hsiao, S. R. Gullans, et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Research, 62:4963-4967, 2002.
    • (2002) Cancer Research , vol.62 , pp. 4963-4967
    • Gordon, G.J.1    Jensen, R.V.2    Hsiao, L.3    Gullans, S.R.4
  • 15
    • 31844451945 scopus 로고    scopus 로고
    • Robust one-class clustering using hybrid global and local search
    • G. Gupta and J. Ghosh. Robust one-class clustering using hybrid global and local search. In Proc. ICML'05, pages 273-280, 2005.
    • (2005) Proc. ICML'05 , pp. 273-280
    • Gupta, G.1    Ghosh, J.2
  • 16
    • 84878084024 scopus 로고    scopus 로고
    • Bregman bubble clustering: A robust, scalable framework for locating multiple, dense regions in data
    • G. Gupta and J. Ghosh. Bregman bubble clustering: A robust, scalable framework for locating multiple, dense regions in data. In Proc. ICDM'06, pages 232-243, 2006.
    • (2006) Proc. ICDM'06 , pp. 232-243
    • Gupta, G.1    Ghosh, J.2
  • 17
    • 4344602134 scopus 로고    scopus 로고
    • Simultaneous feature selection and clustering using a mixture model
    • M. Law, M. Figueiredo, and A.K. Jain. Simultaneous feature selection and clustering using a mixture model. IEEE Trans. PA M I, 26(9):1154-1166, 2004.
    • (2004) IEEE Trans. PA M I , vol.26 , Issue.9 , pp. 1154-1166
    • Law, M.1    Figueiredo, M.2    Jain, A.K.3
  • 18
    • 0036012349 scopus 로고    scopus 로고
    • Plaid models for gene expression data
    • L. Lazzeroni and A. B. Owen. Plaid models for gene expression data. Statistica Sinica, 12(1):61-86, 2002.
    • (2002) Statistica Sinica , vol.12 , Issue.1 , pp. 61-86
    • Lazzeroni, L.1    Owen, A.B.2
  • 19
    • 9444239213 scopus 로고    scopus 로고
    • A probabilistic functional network of yeast genes
    • I. Lee, S. Date, A. Adai, and E. Marcotte. A probabilistic functional network of yeast genes. Science, 306:1555-1558, 2004.
    • (2004) Science , vol.306 , pp. 1555-1558
    • Lee, I.1    Date, S.2    Adai, A.3    Marcotte, E.4
  • 20
    • 3142768191 scopus 로고    scopus 로고
    • Biclustering algorithms for biological data analysis: A survey
    • S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: A survey. IEEE/ACM TCBB, 1(1):24-45, 2004.
    • (2004) IEEE/ACM TCBB , vol.1 , Issue.1 , pp. 24-45
    • Madeira, S.C.1    Oliveira, A.L.2
  • 21
    • 0041627879 scopus 로고    scopus 로고
    • Extracting conserved gene expression motifs from gene expression data
    • T. Murali and S. Kasif. Extracting conserved gene expression motifs from gene expression data. Pacific Symposium on Biocomputing, 8:77-88, 2003.
    • (2003) Pacific Symposium on Biocomputing , vol.8 , pp. 77-88
    • Murali, T.1    Kasif, S.2
  • 22
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • 90-105
    • L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl., 6(1):90-105, 2004.
    • (2004) SIGKDD Explor. Newsl , vol.6 , Issue.1
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 23
    • 33746622162 scopus 로고    scopus 로고
    • Comparing subspace clusterings
    • A. Patrikainen and M. Meila. Comparing subspace clusterings. IEEE TKDE, 18(7):902-916, 2006.
    • (2006) IEEE TKDE , vol.18 , Issue.7 , pp. 902-916
    • Patrikainen, A.1    Meila, M.2
  • 24
    • 33646137384 scopus 로고    scopus 로고
    • A systematic comparison and evaluation of biclustering methods for gene expression data
    • A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, and et. al. A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 22(9):1122-1129, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.9 , pp. 1122-1129
    • Prelic, A.1    Bleuler, S.2    Zimmermann, P.3    Wille, A.4    and et., al.5
  • 25
    • 11244306358 scopus 로고    scopus 로고
    • Discovering statistically significant biclusters in gene expression data
    • A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in gene expression data. Bioinformatics, 18:136-144, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 136-144
    • Tanay, A.1    Sharan, R.2    Shamir, R.3
  • 26
    • 0036372484 scopus 로고    scopus 로고
    • Clustering by pattern similarity in large data sets
    • H. Wang, W. Wang, J. Yang, and P. Yu. Clustering by pattern similarity in large data sets. In Proc. SIGMOD'02, pages 394-405, 2002.
    • (2002) Proc. SIGMOD'02 , pp. 394-405
    • Wang, H.1    Wang, W.2    Yang, J.3    Yu, P.4
  • 27
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • J. Ward. Hierarchical grouping to optimize an objective function. Journal of American Statistical Association, 58(301):236-244, 1963.
    • (1963) Journal of American Statistical Association , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.1
  • 28
    • 33749620002 scopus 로고    scopus 로고
    • Mining shifting-andscaling co-regulation patterns on gene expression profiles
    • X. Xu, Y. Lu, A. Tung, and W. Wang. Mining shifting-andscaling co-regulation patterns on gene expression profiles. In Proc. ICDE'06, page 89, 2006.
    • (2006) Proc. ICDE'06 , pp. 89
    • Xu, X.1    Lu, Y.2    Tung, A.3    Wang, W.4
  • 29
    • 27544510864 scopus 로고    scopus 로고
    • Discovering coherent biclusters from gene expression data using zero-suppressed binary decision diagrams
    • S. Yoon, C. Nardini, L. Benini, and G. D. Micheli. Discovering coherent biclusters from gene expression data using zero-suppressed binary decision diagrams. IEEE/ACM TCBB, 2(4):339-354, 2005.
    • (2005) IEEE/ACM TCBB , vol.2 , Issue.4 , pp. 339-354
    • Yoon, S.1    Nardini, C.2    Benini, L.3    Micheli, G.D.4
  • 30
    • 52649099915 scopus 로고    scopus 로고
    • Mining approximate order preserving clusters in the presence of noise
    • M. Zhang, W. Wang, and J. Liu. Mining approximate order preserving clusters in the presence of noise. In Proc. ICDE'08, pages 160-168, 2008.
    • (2008) Proc. ICDE'08 , pp. 160-168
    • Zhang, M.1    Wang, W.2    Liu, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.