메뉴 건너뛰기




Volumn 5809 LNAI, Issue , 2009, Pages 368-383

Approximation algorithms for tensor clustering

Author keywords

[No Author keywords available]

Indexed keywords

1-D CASE; APPROXIMATION FACTOR; CO-CLUSTERING; DATA ANALYSIS; DATA SIZE; EUCLIDEAN; FUNDAMENTAL TOOLS; HETEROGENEOUS DATA; MODERN APPLICATIONS; NP-HARD; OBJECTIVE FUNCTIONS; PATTERN DISCOVERY;

EID: 77952042297     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-04414-4_30     Document Type: Conference Paper
Times cited : (37)

References (32)
  • 2
    • 33745844738 scopus 로고    scopus 로고
    • Multi-way Clustering Using Super-Symmetric Non-negative Tensor Factorization
    • Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. Springer, Heidelberg
    • Shashua, A., Zass, R., Hazan, T.: Multi-way Clustering Using Super-Symmetric Non-negative Tensor Factorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 595-608. Springer, Heidelberg (2006)
    • (2006) LNCS , vol.3954 , pp. 595-608
    • Shashua, A.1    Zass, R.2    Hazan, T.3
  • 3
    • 77952375075 scopus 로고    scopus 로고
    • Information-theoretic co-clustering
    • Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: KDD, pp. 89-98 (2003)
    • (2003) KDD , pp. 89-98
    • Dhillon, I.S.1    Mallela, S.2    Modha, D.S.3
  • 4
    • 34548691246 scopus 로고    scopus 로고
    • A Generalized Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation
    • Banerjee, A., Dhillon, I.S., Ghosh, J., Merugu, S., Modha, D.S.: A Generalized Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation. JMLR 8, 1919-1986 (2007)
    • (2007) JMLR , vol.8 , pp. 1919-1986
    • Banerjee, A.1    Dhillon, I.S.2    Ghosh, J.3    Merugu, S.4    Modha, D.S.5
  • 8
    • 56049127972 scopus 로고    scopus 로고
    • Mixed Bregman clustering with approximation guarantees
    • Daelemans, W., Goethals, B., Morik, K. (eds.) ECML / PKDD 2008, Part II. Springer, Heidelberg
    • Nock, R., Luosto, P., Kivinen, J.: Mixed Bregman clustering with approximation guarantees. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML / PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 154-169. Springer, Heidelberg (2008)
    • (2008) LNCS (LNAI) , vol.5212 , pp. 154-169
    • Nock, R.1    Luosto, P.2    Kivinen, J.3
  • 9
    • 77952079437 scopus 로고    scopus 로고
    • Approximation algorithms for Bregman clustering, co-clustering and tensor clustering
    • Technical Report 177
    • Sra, S., Jegelka, S., Banerjee, A.: Approximation algorithms for Bregman clustering, co-clustering and tensor clustering. Technical Report 177, MPI for Biological Cybernetics (2008)
    • (2008) MPI for Biological Cybernetics
    • Sra, S.1    Jegelka, S.2    Banerjee, A.3
  • 10
    • 33847677259 scopus 로고    scopus 로고
    • A framework for statistical clustering with constant time approximation algorithms for K-median and K-means clustering
    • Ben-David, S.: A framework for statistical clustering with constant time approximation algorithms for K-median and K-means clustering. Mach. Learn. 66(2-3), 243-257 (2007)
    • (2007) Mach. Learn. , vol.66 , Issue.2-3 , pp. 243-257
    • Ben-David, S.1
  • 13
    • 77952082336 scopus 로고    scopus 로고
    • Workshop on Data Mining using Matrices and Tensors
    • Zha, H., Ding, C., Li, T., Zhu, S.: Workshop on Data Mining using Matrices and Tensors. In: KDD (2008)
    • (2008) KDD
    • Zha, H.1    Ding, C.2    Li, T.3    Zhu, S.4
  • 15
    • 68649096448 scopus 로고    scopus 로고
    • Tensor Decompositions and Applications
    • to appear
    • Kolda, T.G., Bader, B.W.: Tensor Decompositions and Applications. SIAM Review 51(3) (to appear, 2009)
    • (2009) SIAM Review , vol.51 , Issue.3
    • Kolda, T.G.1    Bader, B.W.2
  • 16
    • 84927511887 scopus 로고
    • Direct clustering of a data matrix
    • Hartigan, J.A.: Direct clustering of a data matrix. J. of the Am. Stat. Assoc. 67(337), 123-129 (1972)
    • (1972) J. of the Am. Stat. Assoc. , vol.67 , Issue.337 , pp. 123-129
    • Hartigan, J.A.1
  • 17
    • 0034566393 scopus 로고    scopus 로고
    • Biclustering of expression data
    • AAAI Press, Menlo Park
    • Cheng, Y., Church, G.: Biclustering of expression data. In: Proc. ISMB, pp. 93-103. AAAI Press, Menlo Park (2000)
    • (2000) Proc. ISMB , pp. 93-103
    • Cheng, Y.1    Church, G.2
  • 18
    • 0035789644 scopus 로고    scopus 로고
    • Co-clustering documents and words using bipartite spectral graph partitioning
    • Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: KDD, pp. 269-274 (2001)
    • (2001) KDD , pp. 269-274
    • Dhillon, I.S.1
  • 19
    • 31844439558 scopus 로고    scopus 로고
    • Multi-way distributional clustering via pairwise interactions
    • Bekkerman, R., El-Yaniv, R., McCallum, A.: Multi-way distributional clustering via pairwise interactions. In: ICML (2005)
    • (2005) ICML
    • Bekkerman, R.1    El-Yaniv, R.2    McCallum, A.3
  • 21
    • 77952088585 scopus 로고    scopus 로고
    • A tensor decomposition for geometric grouping and segmentation
    • Govindu, V.M.: A tensor decomposition for geometric grouping and segmentation. In: IEEE CVPR (2005)
    • (2005) IEEE CVPR
    • Govindu, V.M.1
  • 23
    • 84862630897 scopus 로고    scopus 로고
    • Hilbertian metrics and positive definite kernels on probability measures
    • Hein, M., Bousquet, O.: Hilbertian metrics and positive definite kernels on probability measures. In: AISTATS (2005)
    • (2005) AISTATS
    • Hein, M.1    Bousquet, O.2
  • 25
    • 26244461684 scopus 로고    scopus 로고
    • Clustering with Bregman Divergences
    • Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman Divergences. JMLR 6(6), 1705-1749 (2005)
    • (2005) JMLR , vol.6 , Issue.6 , pp. 1705-1749
    • Banerjee, A.1    Merugu, S.2    Dhillon, I.S.3    Ghosh, J.4
  • 26
    • 55349142218 scopus 로고    scopus 로고
    • Tensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem
    • de Silva, V., Lim, L.H.: Tensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem. SIAM J. Matrix Anal. & Appl. 30(3), 1084-1127 (2008)
    • (2008) SIAM J. Matrix Anal. & Appl. , vol.30 , Issue.3 , pp. 1084-1127
    • De Silva, V.1    Lim, L.H.2
  • 29
    • 2942588999 scopus 로고    scopus 로고
    • Minimum Sum Squared Residue based Co-clustering of Gene Expression data
    • Cho, H., Dhillon, I.S., Guan, Y., Sra, S.: Minimum Sum Squared Residue based Co-clustering of Gene Expression data. In: SDM, 114-125 (2004)
    • (2004) SDM , pp. 114-125
    • Cho, H.1    Dhillon, I.S.2    Guan, Y.3    Sra, S.4
  • 30
    • 0037399130 scopus 로고    scopus 로고
    • Spectral biclustering of microarray data: Coclustering genes and conditions
    • DOI 10.1101/gr.648603
    • Kluger, Y., Basri, R., Chang, J.T.: Spectral biclustering of microarray data: Coclustering genes and conditions. Genome Research 13, 703-716 (2003) (Pubitemid 36511928)
    • (2003) Genome Research , vol.13 , Issue.4 , pp. 703-716
    • Kluger, Y.1    Basri, R.2    Chang, J.T.3    Gerstein, M.4
  • 31
    • 49249096441 scopus 로고    scopus 로고
    • Coclustering of human cancer microarrays using minimum sum-squared residue coclustering
    • Cho, H., Dhillon, I.: Coclustering of human cancer microarrays using minimum sum-squared residue coclustering. IEEE/ACM Tran. Comput. Biol. Bioinf. 5(3), 385-400 (2008)
    • (2008) IEEE/ACM Tran. Comput. Biol. Bioinf. , vol.5 , Issue.3 , pp. 385-400
    • Cho, H.1    Dhillon, I.2
  • 32
    • 20044373640 scopus 로고    scopus 로고
    • Transcription-based prediction of response to IFNβ using supervised computational methods
    • Baranzini, S.E., et al: Transcription-based prediction of response to IFNβ using supervised computational methods. PLoS Biology 3(1) (2004)
    • (2004) PLoS Biology , vol.3 , Issue.1
    • Baranzini, S.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.