메뉴 건너뛰기




Volumn 32, Issue 19, 2012, Pages 3949-3962

Activating transcription factor 3 regulates immune and metabolic homeostasis

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVATING TRANSCRIPTION FACTOR 3; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; MESSENGER RNA; STRESS ACTIVATED PROTEIN KINASE; TRANSCRIPTION FACTOR FOXO;

EID: 84868678588     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00429-12     Document Type: Article
Times cited : (65)

References (77)
  • 1
    • 33845496790 scopus 로고    scopus 로고
    • Erwinia carotovora Evf antagonizes the elimination of bacteria in the gut of Drosophila larvae
    • Acosta Muniz C, Jaillard D, Lemaitre B, Boccard F. 2007. Erwinia carotovora Evf antagonizes the elimination of bacteria in the gut of Drosophila larvae. Cell. Microbiol. 9:106 -119.
    • (2007) Cell. Microbiol. , vol.9 , pp. 106-119
    • Acosta Muniz, C.1    Jaillard, D.2    Lemaitre, B.3    Boccard, F.4
  • 2
    • 0035800759 scopus 로고    scopus 로고
    • The roles of ATF3 in glucose homeostasis A transgenic mouse model with liver dysfunction and defects in endocrine pancreas
    • Allen-Jennings AE, Hartman MG, Kociba GJ, Hai T. 2001. The roles of ATF3 in glucose homeostasis. A transgenic mouse model with liver dysfunction and defects in endocrine pancreas. J. Biol. Chem. 276:29507- 29514.
    • (2001) J. Biol. Chem , vol.276 , pp. 29507-29514
    • Allen-Jennings, A.E.1    Hartman, M.G.2    Kociba, G.J.3    Hai, T.4
  • 3
    • 0037205462 scopus 로고    scopus 로고
    • The roles of ATF3 in liver dysfunction and the regulation of phosphoenolpyruvate carboxykinase gene expression
    • Allen-Jennings AE, Hartman MG, Kociba GJ, Hai T. 2002. The roles of ATF3 in liver dysfunction and the regulation of phosphoenolpyruvate carboxykinase gene expression. J. Biol. Chem. 277:20020 -20025.
    • (2002) J. Biol. Chem , vol.277 , pp. 20020-20025
    • Allen-Jennings, A.E.1    Hartman, M.G.2    Kociba, G.J.3    Hai, T.4
  • 4
    • 26244452320 scopus 로고    scopus 로고
    • The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix
    • Arakane Y, et al. 2005. The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol. Biol. 14:453- 463.
    • (2005) Insect Mol. Biol , vol.14 , pp. 453-463
    • Arakane, Y.1
  • 5
    • 75149154705 scopus 로고    scopus 로고
    • FOXO-dependent regulation of innate immune homeostasis
    • Becker T, et al. 2010. FOXO-dependent regulation of innate immune homeostasis. Nature 463:369 -373.
    • (2010) Nature , vol.463 , pp. 369-373
    • Becker, T.1
  • 6
    • 0034705026 scopus 로고    scopus 로고
    • Drosophila Thor participates in host immune defense and connects a translational regulator with innate immunity
    • Bernal A, Kimbrell DA. 2000. Drosophila Thor participates in host immune defense and connects a translational regulator with innate immunity. Proc. Natl. Acad. Sci. U. S. A. 97:6019-6024.
    • (2000) Proc. Natl. Acad. Sci. U. S. A , vol.97 , pp. 6019-6024
    • Bernal, A.1    Kimbrell, D.A.2
  • 7
    • 33847660443 scopus 로고    scopus 로고
    • An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases
    • Bischof J, Maeda RK, Hediger M, Karch F, Basler K. 2007. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl. Acad. Sci. U. S. A. 104:3312-3317.
    • (2007) Proc. Natl. Acad. Sci. U. S. A , vol.104 , pp. 3312-3317
    • Bischof, J.1    Maeda, R.K.2    Hediger, M.3    Karch, F.4    Basler, K.5
  • 8
    • 60649091298 scopus 로고    scopus 로고
    • Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation
    • Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B. 2009. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5:200 -211.
    • (2009) Cell Host Microbe , vol.5 , pp. 200-211
    • Buchon, N.1    Broderick, N.A.2    Poidevin, M.3    Pradervand, S.4    Lemaitre, B.5
  • 9
    • 14644427890 scopus 로고    scopus 로고
    • Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB
    • Cai D, et al. 2005. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11:183-190.
    • (2005) Nat. Med , vol.11 , pp. 183-190
    • Cai, D.1
  • 10
    • 34249804498 scopus 로고    scopus 로고
    • Using FlyAtlas to identify better Drosophila melanogaster models of human disease
    • Chintapalli VR, Wang J, Dow JAT. 2007. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet. 39:715- 720.
    • (2007) Nat. Genet , vol.39 , pp. 715-720
    • Chintapalli, V.R.1    Wang, J.2    Dow, J.A.T.3
  • 11
    • 34147172817 scopus 로고    scopus 로고
    • Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis
    • Cox CR, Gilmore MS. 2007. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect. Immun. 75:1565-1576.
    • (2007) Infect. Immun , vol.75 , pp. 1565-1576
    • Cox, C.R.1    Gilmore, M.S.2
  • 12
    • 47949092612 scopus 로고    scopus 로고
    • A member of the p38 mitogen-activated protein kinase family is responsible for transcriptional induction of Dopa decarboxylase in the epidermis of Drosophila melanogaster during the innate immune response
    • Davis MM, Primrose DA, Hodgetts RB. 2008. A member of the p38 mitogen-activated protein kinase family is responsible for transcriptional induction of Dopa decarboxylase in the epidermis of Drosophila melanogaster during the innate immune response. Mol. Cell. Biol. 28:4883- 4895.
    • (2008) Mol. Cell. Biol , vol.28 , pp. 4883-4895
    • Davis, M.M.1    Primrose, D.A.2    Hodgetts, R.B.3
  • 13
    • 0037013856 scopus 로고    scopus 로고
    • The Toll and Imd pathways are the major regulators of the immune response in Drosophila
    • De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B. 2002. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21:2568 -2579.
    • (2002) EMBO J , vol.21 , pp. 2568-2579
    • De Gregorio, E.1    Spellman, P.T.2    Tzou, P.3    Rubin, G.M.4    Lemaitre, B.5
  • 14
    • 73949139159 scopus 로고    scopus 로고
    • The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling
    • DiAngelo JR, Bland ML, Bambina S, Cherry S, Birnbaum MJ. 2009. The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proc. Natl. Acad. Sci. U. S. A. 106:20853- 20858.
    • (2009) Proc. Natl. Acad. Sci. U. S. A , vol.106 , pp. 20853-20858
    • DiAngelo, J.R.1    Bland, M.L.2    Bambina, S.3    Cherry, S.4    Birnbaum, M.J.5
  • 15
    • 33750023633 scopus 로고    scopus 로고
    • Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila
    • Dionne MS, Pham LN, Shirasu-Hiza M, Schneider DS. 2006. Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila. Curr. Biol. 16:1977-1985.
    • (2006) Curr. Biol , vol.16 , pp. 1977-1985
    • Dionne, M.S.1    Pham, L.N.2    Shirasu-Hiza, M.3    Schneider, D.S.4
  • 16
    • 33845340819 scopus 로고    scopus 로고
    • How flies get their size: genetics meets physiology
    • Edgar BA. 2006. How flies get their size: genetics meets physiology. Nat. Rev. Genet. 7:907-916.
    • (2006) Nat. Rev. Genet , vol.7 , pp. 907-916
    • Edgar, B.A.1
  • 17
    • 33646547951 scopus 로고    scopus 로고
    • Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4
    • Gilchrist M, et al. 2006. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173-178.
    • (2006) Nature , vol.441 , pp. 173-178
    • Gilchrist, M.1
  • 19
    • 26944489689 scopus 로고    scopus 로고
    • Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila
    • Grönke S, et al. 2005. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab. 1:323-330.
    • (2005) Cell Metab , vol.1 , pp. 323-330
    • Grönke, S.1
  • 20
    • 34250306022 scopus 로고    scopus 로고
    • Dual lipolytic control of body fat storage and mobilization in Drosophila
    • doi:10.1371/journal.pbio.0050137
    • Grönke S, et al. 2007. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol. 5:e137. doi:10.1371/journal.pbio.0050137.
    • (2007) PLoS Biol , vol.5
    • Grönke, S.1
  • 22
    • 78449308832 scopus 로고    scopus 로고
    • ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component?
    • Hai T, Wolford CC, Chang Y-S. 2010. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr. 15:1-11.
    • (2010) Gene Expr , vol.15 , pp. 1-11
    • Hai, T.1    Wolford, C.C.2    Chang, Y.-S.3
  • 23
    • 2942718697 scopus 로고    scopus 로고
    • Role for activating transcription factor 3 in stress-induced β-cell apoptosis
    • Hartman MG, et al. 2004. Role for activating transcription factor 3 in stress-induced β-cell apoptosis. Mol. Cell. Biol. 24:5721-5732.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 5721-5732
    • Hartman, M.G.1
  • 24
    • 0033231556 scopus 로고    scopus 로고
    • Relish, a central factor in the control of humoral but not cellular immunity in Drosophila
    • Hedengren M, et al. 1999. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 4:827- 837.
    • (1999) Mol. Cell , vol.4 , pp. 827-837
    • Hedengren, M.1
  • 25
    • 60549096559 scopus 로고    scopus 로고
    • New insights into peritrophic matrix synthesis, architecture, and function
    • Hegedus D, Erlandson M, Gillott C, Toprak U. 2009. New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. Entomol. 54:285-302.
    • (2009) Annu. Rev. Entomol , vol.54 , pp. 285-302
    • Hegedus, D.1    Erlandson, M.2    Gillott, C.3    Toprak, U.4
  • 26
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4:44 -57.
    • (2009) Nat. Protoc , vol.4 , pp. 44-57
    • Huang, D.W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 27
    • 65649089080 scopus 로고    scopus 로고
    • Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz
    • doi: 10.1371/journal.pgen.1000460
    • Hull-Thompson J, et al. 2009. Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz. PLoS Genet. 5:e1000460. doi: 10.1371/journal.pgen.1000460.
    • (2009) PLoS Genet , vol.5
    • Hull-Thompson, J.1
  • 28
    • 1642458354 scopus 로고    scopus 로고
    • Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response
    • Jiang HY, et al. 2004. Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol. Cell. Biol. 24: 1365-1377.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 1365-1377
    • Jiang, H.Y.1
  • 29
    • 62649089279 scopus 로고    scopus 로고
    • Insulin and JNK: optimizing metabolic homeostasis and lifespan
    • Karpac J, Jasper H. 2009. Insulin and JNK: optimizing metabolic homeostasis and lifespan. Trends Endocrinol. Metab. 20:100 -106.
    • (2009) Trends Endocrinol. Metab , vol.20 , pp. 100-106
    • Karpac, J.1    Jasper, H.2
  • 30
    • 79958181684 scopus 로고    scopus 로고
    • Dynamic coordination of innate immune signaling and insulin signaling regulates systemic responses to localized DNA damage
    • Karpac J, Younger A, Jasper H. 2011. Dynamic coordination of innate immune signaling and insulin signaling regulates systemic responses to localized DNA damage. Dev. Cell 20:841- 854.
    • (2011) Dev. Cell , vol.20 , pp. 841-854
    • Karpac, J.1    Younger, A.2    Jasper, H.3
  • 31
    • 43049171620 scopus 로고    scopus 로고
    • Pirk is a negative regulator of the Drosophila Imd pathway
    • Kleino A, et al. 2008. Pirk is a negative regulator of the Drosophila Imd pathway. J. Immunol. 180:5413-5422.
    • (2008) J. Immunol , vol.180 , pp. 5413-5422
    • Kleino, A.1
  • 33
    • 80053166581 scopus 로고    scopus 로고
    • Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster
    • Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B. 2011. Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 108:15966 -15971.
    • (2011) Proc. Natl. Acad. Sci. U. S. A , vol.108 , pp. 15966-15971
    • Kuraishi, T.1    Binggeli, O.2    Opota, O.3    Buchon, N.4    Lemaitre, B.5
  • 34
    • 0035308590 scopus 로고    scopus 로고
    • A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA
    • Lee EC, et al. 2001. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56-65.
    • (2001) Genomics , vol.73 , pp. 56-65
    • Lee, E.C.1
  • 35
    • 34047268684 scopus 로고    scopus 로고
    • The host defense of Drosophila melanogaster
    • Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25:697-743.
    • (2007) Annu. Rev. Immunol , vol.25 , pp. 697-743
    • Lemaitre, B.1    Hoffmann, J.2
  • 36
    • 58549105754 scopus 로고    scopus 로고
    • Transcriptional signatures in response to wheat germ agglutinin and starvation in Drosophila melanogaster larval midgut
    • Li H-M, et al. 2009. Transcriptional signatures in response to wheat germ agglutinin and starvation in Drosophila melanogaster larval midgut. Insect Mol. Biol. 18:21-31.
    • (2009) Insect Mol. Biol , vol.18 , pp. 21-31
    • Li, H.-M.1
  • 37
    • 0035710746 scopus 로고    scopus 로고
    • Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method
    • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402- 408.
    • (2001) Methods , vol.25 , pp. 402-408
    • Livak, K.J.1    Schmittgen, T.D.2
  • 38
    • 36048966491 scopus 로고    scopus 로고
    • FlyMine: an integrated database for Drosophila and Anopheles genomics
    • Lyne R, et al. 2007. FlyMine: an integrated database for Drosophila and Anopheles genomics. Genome Biol. 8:R129.
    • (2007) Genome Biol , vol.8
    • Lyne, R.1
  • 39
    • 15544382565 scopus 로고    scopus 로고
    • Immunity, inflammation, and allergy in the gut
    • Macdonald TT, Monteleone G. 2005. Immunity, inflammation, and allergy in the gut. Science 307:1920 -1925.
    • (2005) Science , vol.307 , pp. 1920-1925
    • Macdonald, T.T.1    Monteleone, G.2
  • 40
    • 0032519787 scopus 로고    scopus 로고
    • Puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila
    • Martín-Blanco E, et al. 1998. Puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 12:557-570.
    • (1998) Genes Dev , vol.12 , pp. 557-570
    • Martín-Blanco, E.1
  • 41
    • 34447648044 scopus 로고    scopus 로고
    • JDP2 suppresses adipocyte differentiation by regulating histone acetylation
    • Nakade K, et al. 2007. JDP2 suppresses adipocyte differentiation by regulating histone acetylation. Cell Death Differ. 14:1398 -1405.
    • (2007) Cell Death Differ , vol.14 , pp. 1398-1405
    • Nakade, K.1
  • 42
    • 60649099790 scopus 로고    scopus 로고
    • Drosophila HNF4 regulates lipid mobilization and β-oxidation
    • Palanker L, Tennessen JM, Lam G, Thummel CS. 2009. Drosophila HNF4 regulates lipid mobilization and β-oxidation. Cell Metab. 9:228- 239.
    • (2009) Cell Metab , vol.9 , pp. 228-239
    • Palanker, L.1    Tennessen, J.M.2    Lam, G.3    Thummel, C.S.4
  • 43
    • 54349107492 scopus 로고    scopus 로고
    • IKK/NF-κB signaling in intestinal epithelial cells controls immune homeostasis in the gut
    • Pasparakis M. 2008. IKK/NF-κB signaling in intestinal epithelial cells controls immune homeostasis in the gut. Mucosal Immunol. 1(Suppl. 1):S54 -S57.
    • (2008) Mucosal Immunol , vol.1 , Issue.SUPPL. 1
    • Pasparakis, M.1
  • 45
    • 0032513199 scopus 로고    scopus 로고
    • The Drosophila melanogaster lipase homologs: a gene family with tissue and developmental specific expression
    • Pistillo D, et al. 1998. The Drosophila melanogaster lipase homologs: a gene family with tissue and developmental specific expression. J. Mol. Biol. 276:877- 885.
    • (1998) J. Mol. Biol , vol.276 , pp. 877-885
    • Pistillo, D.1
  • 46
    • 34547440528 scopus 로고    scopus 로고
    • Increased internal and external bacterial load during Drosophila aging without life-span tradeoff
    • Ren C, Webster P, Finkel SE, Tower J. 2007. Increased internal and external bacterial load during Drosophila aging without life-span tradeoff. Cell Metab. 6:144 -152.
    • (2007) Cell Metab , vol.6 , pp. 144-152
    • Ren, C.1    Webster, P.2    Finkel, S.E.3    Tower, J.4
  • 47
    • 82155162474 scopus 로고    scopus 로고
    • Epithelial homeostasis and the underlying molecular mechanisms in the gut of the insect model Drosophila melanogaster
    • Royet J. 2011. Epithelial homeostasis and the underlying molecular mechanisms in the gut of the insect model Drosophila melanogaster. Cell. Mol. Life Sci. 68:3651-3660.
    • (2011) Cell. Mol. Life Sci , vol.68 , pp. 3651-3660
    • Royet, J.1
  • 48
    • 0034303573 scopus 로고    scopus 로고
    • Role of Drosophila IKK in a Tollindependent antibacterial immune response
    • Rutschmann S, et al. 2000. Role of Drosophila IKK in a Tollindependent antibacterial immune response. Nat. Immunol. 1:342-347.
    • (2000) Nat. Immunol , vol.1 , pp. 342-347
    • Rutschmann, S.1
  • 49
    • 38949153861 scopus 로고    scopus 로고
    • Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila
    • Ryu J-H, et al. 2008. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319:777- 782.
    • (2008) Science , vol.319 , pp. 777-782
    • Ryu, J.-H.1
  • 50
    • 33748999996 scopus 로고    scopus 로고
    • A recombineering pipeline for functional genomics applied to Caenorhabditis elegans
    • Sarov M, et al. 2006. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3:839-844.
    • (2006) Nat. Methods , vol.3 , pp. 839-844
    • Sarov, M.1
  • 51
    • 73649143893 scopus 로고    scopus 로고
    • Interaction between Drosophila bZIP proteins Atf3 and Jun prevents replacement of epithelial cells during metamorphosis
    • Sekyrova P, Bohmann D, Jindra M, Uhlirova M. 2010. Interaction between Drosophila bZIP proteins Atf3 and Jun prevents replacement of epithelial cells during metamorphosis. Development 137:141-150.
    • (2010) Development , vol.137 , pp. 141-150
    • Sekyrova, P.1    Bohmann, D.2    Jindra, M.3    Uhlirova, M.4
  • 53
    • 79959559276 scopus 로고    scopus 로고
    • dFOXOindependent effects of reduced insulin-like signaling in Drosophila
    • Slack C, Giannakou ME, Foley A, Goss M, Partridge L. 2011. dFOXOindependent effects of reduced insulin-like signaling in Drosophila. Aging Cell 10:735-748.
    • (2011) Aging Cell , vol.10 , pp. 735-748
    • Slack, C.1    Giannakou, M.E.2    Foley, A.3    Goss, M.4    Partridge, L.5
  • 54
    • 77955806634 scopus 로고    scopus 로고
    • JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction
    • Solinas G, Karin M. 2010. JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB J. 24:2596 -2611.
    • (2010) FASEB J , vol.24 , pp. 2596-2611
    • Solinas, G.1    Karin, M.2
  • 55
    • 80052774197 scopus 로고    scopus 로고
    • Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing
    • Storelli G, et al. 2011. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14:403- 414.
    • (2011) Cell Metab , vol.14 , pp. 403-414
    • Storelli, G.1
  • 56
    • 72449195397 scopus 로고    scopus 로고
    • Molecular mechanisms of metabolic regulation by insulin in Drosophila
    • Teleman A. 2010. Molecular mechanisms of metabolic regulation by insulin in Drosophila. Biochem. J. 425:13-26.
    • (2010) Biochem. J , vol.425 , pp. 13-26
    • Teleman, A.1
  • 57
    • 23944525416 scopus 로고    scopus 로고
    • 4E-BP functions as a metabolic brake used under stress conditions but not during normal growth
    • Teleman AA, Chen Y-W, Cohen SM. 2005. 4E-BP functions as a metabolic brake used under stress conditions but not during normal growth. Genes Dev. 19:1844 -1848.
    • (2005) Genes Dev , vol.19 , pp. 1844-1848
    • Teleman, A.A.1    Chen, Y.-W.2    Cohen, S.M.3
  • 58
    • 70449518082 scopus 로고    scopus 로고
    • ATF3 transcription factor and its emerging roles in immunity and cancer
    • Thompson MR, Xu D, Williams BRG. 2009. ATF3 transcription factor and its emerging roles in immunity and cancer. J. Mol. Med. 87:1053- 1060.
    • (2009) J. Mol. Med , vol.87 , pp. 1053-1060
    • Thompson, M.R.1    Xu, D.2    Williams, B.R.G.3
  • 59
    • 79957902145 scopus 로고    scopus 로고
    • Gut microbiome, obesity, and metabolic dysfunction
    • Tilg H, Kaser A. 2011. Gut microbiome, obesity, and metabolic dysfunction. J. Clin. Invest. 121:2126 -2132.
    • (2011) J. Clin. Invest , vol.121 , pp. 2126-2132
    • Tilg, H.1    Kaser, A.2
  • 60
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: discovering splice junctions with RNA-Seq
    • Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105-1111.
    • (2009) Bioinformatics , vol.25 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.L.3
  • 61
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNASeq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell C, et al. 2010. Transcript assembly and quantification by RNASeq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28:511-515.
    • (2010) Nat. Biotechnol , vol.28 , pp. 511-515
    • Trapnell, C.1
  • 62
    • 0033638404 scopus 로고    scopus 로고
    • Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia
    • Tzou P, et al. 2000. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13:737-748.
    • (2000) Immunity , vol.13 , pp. 737-748
    • Tzou, P.1
  • 63
    • 67349098844 scopus 로고    scopus 로고
    • Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster
    • Venken KJT, et al. 2009. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat. Methods 6:431- 434.
    • (2009) Nat. Methods , vol.6 , pp. 431-434
    • Venken, K.J.T.1
  • 64
    • 39149139982 scopus 로고    scopus 로고
    • dFOXO regulates transcription of a Drosophila acid lipase
    • Vihervaara T, Puig O. 2008. dFOXO regulates transcription of a Drosophila acid lipase. J. Mol. Biol. 376:1215-1223.
    • (2008) J. Mol. Biol , vol.376 , pp. 1215-1223
    • Vihervaara, T.1    Puig, O.2
  • 65
    • 33645988855 scopus 로고    scopus 로고
    • The comparative physiology of food deprivation: from feast to famine
    • Wang T, Hung CCY, Randall DJ. 2006. The comparative physiology of food deprivation: from feast to famine. Annu. Rev. Physiol. 68:223-251.
    • (2006) Annu. Rev. Physiol , vol.68 , pp. 223-251
    • Wang, T.1    Hung, C.C.Y.2    Randall, D.J.3
  • 67
    • 35748973890 scopus 로고    scopus 로고
    • Negative regulation of TLR-signaling pathways by activating transcription factor-3
    • Whitmore MM, et al. 2007. Negative regulation of TLR-signaling pathways by activating transcription factor-3. J. Immunol. 179:3622-3630.
    • (2007) J. Immunol , vol.179 , pp. 3622-3630
    • Whitmore, M.M.1
  • 68
    • 59349117885 scopus 로고    scopus 로고
    • The N-terminal half of the Drosophila Rel/NF-κB factor Relish, REL-68, constitutively activates transcription of specific Relish target genes
    • Wiklund M-L, Steinert S, Junell A, Hultmark D, Stöven S. 2009. The N-terminal half of the Drosophila Rel/NF-κB factor Relish, REL-68, constitutively activates transcription of specific Relish target genes. Dev. Comp. Immunol. 33:690-696.
    • (2009) Dev. Comp. Immunol , vol.33 , pp. 690-696
    • Wiklund, M.-L.1    Steinert, S.2    Junell, A.3    Hultmark, D.4    Stöven, S.5
  • 69
    • 41149122136 scopus 로고    scopus 로고
    • Feeding our immune system: impact on metabolism
    • doi:10.1155/2008/639803
    • Wolowczuk I, et al. 2008. Feeding our immune system: impact on metabolism. Clin. Dev. Immunol. 2008:1-19. doi:10.1155/2008/639803.
    • (2008) Clin. Dev. Immunol , vol.2008 , pp. 1-19
    • Wolowczuk, I.1
  • 70
    • 33947181399 scopus 로고    scopus 로고
    • ird1 is a Vps15 homologue important for antibacterial immune responses in Drosophila
    • Wu J, Randle KE, Wu LP. 2007. ird1 is a Vps15 homologue important for antibacterial immune responses in Drosophila. Cell Microbiol. 9:1073- 1085.
    • (2007) Cell Microbiol , vol.9 , pp. 1073-1085
    • Wu, J.1    Randle, K.E.2    Wu, L.P.3
  • 71
    • 22744442218 scopus 로고    scopus 로고
    • Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination
    • Yan C, Lu D, Hai T, Boyd DD. 2005. Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J. 24: 2425-2435.
    • (2005) EMBO J , vol.24 , pp. 2425-2435
    • Yan, C.1    Lu, D.2    Hai, T.3    Boyd, D.D.4
  • 72
    • 0022199277 scopus 로고
    • Microanalysis of complex tissue lipids by high-performance thin-layer chromatography
    • Yao JK, Rastetter GM. 1985. Microanalysis of complex tissue lipids by high-performance thin-layer chromatography. Anal. Biochem. 150:111- 116.
    • (1985) Anal. Biochem , vol.150 , pp. 111-116
    • Yao, J.K.1    Rastetter, G.M.2
  • 73
    • 0035979775 scopus 로고    scopus 로고
    • Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ
    • Yuan M, et al. 2001. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293:1673- 1677.
    • (2001) Science , vol.293 , pp. 1673-1677
    • Yuan, M.1
  • 74
    • 0033371596 scopus 로고    scopus 로고
    • Suppression of food intake and growth by amino acids in Drosophila: the role of pumpless, a fat body expressed gene with homology to vertebrate glycine cleavage system
    • Zinke I, Kirchner C, Chao LC, Tetzlaff MT, Pankratz MJ. 1999. Suppression of food intake and growth by amino acids in Drosophila: the role of pumpless, a fat body expressed gene with homology to vertebrate glycine cleavage system. Development 126:5275-5284.
    • (1999) Development , vol.126 , pp. 5275-5284
    • Zinke, I.1    Kirchner, C.2    Chao, L.C.3    Tetzlaff, M.T.4    Pankratz, M.J.5
  • 75
    • 0037112907 scopus 로고    scopus 로고
    • Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response
    • Zinke I, Schütz CS, Katzenberger JD, Bauer M, Pankratz MJ. 2002. Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J. 21:6162- 6173.
    • (2002) EMBO J , vol.21 , pp. 6162-6173
    • Zinke, I.1    Schütz, C.S.2    Katzenberger, J.D.3    Bauer, M.4    Pankratz, M.J.5
  • 76
    • 77954825385 scopus 로고    scopus 로고
    • The roles of ATF3, an adaptive-response gene, in high-fat-diet-induced diabetes and pancreatic-cell dysfunction
    • Zmuda EJ, et al. 2010. The roles of ATF3, an adaptive-response gene, in high-fat-diet-induced diabetes and pancreatic-cell dysfunction. Mol. Endocrinol. 24:1423-1433.
    • (2010) Mol. Endocrinol , vol.24 , pp. 1423-1433
    • Zmuda, E.J.1
  • 77
    • 78649274403 scopus 로고    scopus 로고
    • Increased extracellular adenosine in Drosophila that are deficient in adenosine deaminase activates a release of energy stores leading to wasting and death
    • Zuberova M, Fenckova M, Simek P, Janeckova L, Dolezal T. 2010. Increased extracellular adenosine in Drosophila that are deficient in adenosine deaminase activates a release of energy stores leading to wasting and death. Dis. Model Mech. 3:773-784.
    • (2010) Dis. Model Mech , vol.3 , pp. 773-784
    • Zuberova, M.1    Fenckova, M.2    Simek, P.3    Janeckova, L.4    Dolezal, T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.