-
1
-
-
40449116114
-
De novo computational design of retro-aldol enzymes
-
Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D, Zanghellini A, Gallaher J L, Betker JL, Tanaka F, Barbas CFIII, Hilvert D, Houk KN, Stoddard BL, Baker D. De novo computational design of retro-aldol enzymes. Science 2008; 319: 1387-1391.
-
(2008)
Science
, vol.319
, pp. 1387-1391
-
-
Jiang, L.1
Althoff, E.A.2
Clemente, F.R.3
Doyle, L.4
Röthlisberger, D.5
Zanghellini, A.6
Gallaher, J.L.7
Betker, J.L.8
Tanaka, F.9
Barbas III, C.F.10
Hilvert, D.11
Houk, K.N.12
Stoddard, B.L.13
Baker, D.14
-
2
-
-
43449098518
-
Kemp elimination catalysts by computational enzyme design
-
Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D. Kemp elimination catalysts by computational enzyme design. Nature 2008; 453: 190-195.
-
(2008)
Nature
, vol.453
, pp. 190-195
-
-
Röthlisberger, D.1
Khersonsky, O.2
Wollacott, A.M.3
Jiang, L.4
DeChancie, J.5
Betker, J.6
Gallaher, J.L.7
Althoff, E.A.8
Zanghellini, A.9
Dym, O.10
Albeck, S.11
Houk, K.N.12
Tawfik, D.S.13
Baker, D.14
-
3
-
-
0033616575
-
Designing conditions for in vitro formation of amyloid protofilaments and fibrils
-
Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci USA 1999; 96: 3590-3594.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 3590-3594
-
-
Chiti, F.1
Webster, P.2
Taddei, N.3
Clark, A.4
Stefani, M.5
Ramponi, G.6
Dobson, C.M.7
-
5
-
-
0000050196
-
From minimal models to real proteins: time scales for protein folding kinetics
-
Thirumalai D. From minimal models to real proteins: time scales for protein folding kinetics. Journal de Physique Orsay Fr 5 1995; 1457-1467.
-
(1995)
Journal de Physique Orsay Fr
, vol.5
, pp. 1457-1467
-
-
Thirumalai, D.1
-
7
-
-
0030623529
-
Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold
-
Finkelstein AV, Badretdinov AYa. Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold. Folding Des 1997; 2: 115-121.
-
(1997)
Folding Des
, vol.2
, pp. 115-121
-
-
Finkelstein, A.V.1
Badretdinov, A.Y.2
-
8
-
-
0032502839
-
Contact order, transition state placement and the refolding rates of single domain proteins
-
Plaxco KW, Simons KT, Baker D. Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol 1998; 277: 985-994.
-
(1998)
J Mol Biol
, vol.277
, pp. 985-994
-
-
Plaxco, K.W.1
Simons, K.T.2
Baker, D.3
-
9
-
-
0031815749
-
How do small single-domain proteins fold?
-
Jackson S. E. How do small single-domain proteins fold? Fold Des 1998; 3: R81-R91.
-
(1998)
Fold Des
, vol.3
-
-
Jackson, S.E.1
-
10
-
-
0035850732
-
Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model
-
Koga N, Takada S. Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model. J Mol Biol 2001; 313: 171-180.
-
(2001)
J Mol Biol
, vol.313
, pp. 171-180
-
-
Koga, N.1
Takada, S.2
-
12
-
-
0033613165
-
A simple model for calculating the kinetics of protein folding from three-dimensional structures
-
Muñoz V, Eaton WA. A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc Natl Acad Sci USA 1999; 96: 11311-11316.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 11311-11316
-
-
Muñoz, V.1
Eaton, W.A.2
-
13
-
-
0033613131
-
A theoretical search for folding/unfolding nuclei in three-dimensional protein structures
-
Galzitskaya OV, Finkelstein AV. A theoretical search for folding/unfolding nuclei in three-dimensional protein structures. Proc Natl Acad Sci USA 1999; 96: 11299-11304.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 11299-11304
-
-
Galzitskaya, O.V.1
Finkelstein, A.V.2
-
14
-
-
0035928731
-
Theoretical study of a landscape of protein folding-unfolding pathways. Folding rates at midtransition
-
Ivankov DN, Finkelstein AV. Theoretical study of a landscape of protein folding-unfolding pathways. Folding rates at midtransition. Biochemistry 2001; 40: 9957-9961.
-
(2001)
Biochemistry
, vol.40
, pp. 9957-9961
-
-
Ivankov, D.N.1
Finkelstein, A.V.2
-
15
-
-
0036384269
-
Simple physical models connect theory and experiment in protein folding kinetics
-
Alm E, Morozov AV, Kortemme T, Baker D. Simple physical models connect theory and experiment in protein folding kinetics. J Mol Biol 2002; 322: 463-476.
-
(2002)
J Mol Biol
, vol.322
, pp. 463-476
-
-
Alm, E.1
Morozov, A.V.2
Kortemme, T.3
Baker, D.4
-
17
-
-
77953492654
-
Influence of conformational entropy on the protein folding rate
-
Galzitskaya OV. Influence of conformational entropy on the protein folding rate. Entropy 2010; 12: 961-982.
-
(2010)
Entropy
, vol.12
, pp. 961-982
-
-
Galzitskaya, O.V.1
-
18
-
-
12944309313
-
Scaling of folding times with protein size
-
Naganathan AN, Muñoz V. Scaling of folding times with protein size. J Am Chem Soc 2005; 127: 480-481.
-
(2005)
J Am Chem Soc
, vol.127
, pp. 480-481
-
-
Naganathan, A.N.1
Muñoz, V.2
-
19
-
-
0037402639
-
Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics
-
Galzitskaya OV, Garbuzynskiy SO, Ivankov DN, Finkelstein AV. Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics. Proteins 2003; 51: 162-166.
-
(2003)
Proteins
, vol.51
, pp. 162-166
-
-
Galzitskaya, O.V.1
Garbuzynskiy, S.O.2
Ivankov, D.N.3
Finkelstein, A.V.4
-
22
-
-
0002006297
-
Are there pathways for protein folding?
-
Levinthal C. Are there pathways for protein folding? J Chim Phys Chim Biol 1968; 65: 44-45.
-
(1968)
J Chim Phys Chim Biol
, vol.65
, pp. 44-45
-
-
Levinthal, C.1
-
23
-
-
0037133574
-
How the folding rate constant of simple, single-domain proteins depends on the number of native contacts
-
Makarov DE, Keller CA, Plaxco KW, Metiu H. How the folding rate constant of simple, single-domain proteins depends on the number of native contacts. Proc Natl Acad Sci USA 2002; 99: 3535-3539.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 3535-3539
-
-
Makarov, D.E.1
Keller, C.A.2
Plaxco, K.W.3
Metiu, H.4
-
24
-
-
0037215268
-
The topomer search model: a simple, quantitative theory of two-state protein folding kinetics
-
Makarov DE, Plaxco KW. The topomer search model: a simple, quantitative theory of two-state protein folding kinetics. Protein Sci 2003; 12: 17-26.
-
(2003)
Protein Sci
, vol.12
, pp. 17-26
-
-
Makarov, D.E.1
Plaxco, K.W.2
-
25
-
-
19444371858
-
A critical assessment of the topomer search model of protein folding using a continuum explicit-chain model with extensive conformational sampling
-
Wallin S, Chan HS. A critical assessment of the topomer search model of protein folding using a continuum explicit-chain model with extensive conformational sampling. Protein Sci 2005; 14: 1643-1660.
-
(2005)
Protein Sci
, vol.14
, pp. 1643-1660
-
-
Wallin, S.1
Chan, H.S.2
-
26
-
-
2942689229
-
Prediction of protein folding rates from the amino acid sequence-predicted secondary structure
-
Ivankov DN, Finkelstein AV. Prediction of protein folding rates from the amino acid sequence-predicted secondary structure. Proc Natl Acad Sci USA 2004; 101: 8942-8944.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 8942-8944
-
-
Ivankov, D.N.1
Finkelstein, A.V.2
-
27
-
-
0042510944
-
Contact order revisited: influence of protein size on the folding rate
-
Ivankov DN, Garbuzynskiy SO, Alm E, Plaxco KW, Baker D, Finkelstein AV. Contact order revisited: influence of protein size on the folding rate. Protein Sci 2003; 12: 2057-2562.
-
(2003)
Protein Sci
, vol.12
, pp. 2057-2562
-
-
Ivankov, D.N.1
Garbuzynskiy, S.O.2
Alm, E.3
Plaxco, K.W.4
Baker, D.5
Finkelstein, A.V.6
-
28
-
-
0035967862
-
Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction
-
Gromiha MM, Selvaraj S. Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction. J Mol Biol 2001; 310: 27-32.
-
(2001)
J Mol Biol
, vol.310
, pp. 27-32
-
-
Gromiha, M.M.1
Selvaraj, S.2
-
29
-
-
17144369578
-
Protein folding rates estimated from contact predictions
-
Punta M, Rost B. Protein folding rates estimated from contact predictions. J Mol Biol 2005; 348: 507-512.
-
(2005)
J Mol Biol
, vol.348
, pp. 507-512
-
-
Punta, M.1
Rost, B.2
-
30
-
-
0036215854
-
Folding rate prediction using total contact distance
-
Zhou H, Zhou Y. Folding rate prediction using total contact distance. Biophys J 2002; 82: 458-463.
-
(2002)
Biophys J
, vol.82
, pp. 458-463
-
-
Zhou, H.1
Zhou, Y.2
-
31
-
-
0031790334
-
Metastable states and folding free energy barriers
-
Baker D. Metastable states and folding free energy barriers. Nat Struct Biol 1998; 5: 1021-1024.
-
(1998)
Nat Struct Biol
, vol.5
, pp. 1021-1024
-
-
Baker, D.1
-
32
-
-
0034652206
-
Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism
-
Fersht AR. Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism. Proc Natl Acad Sci USA 2000; 97: 1525-1529.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 1525-1529
-
-
Fersht, A.R.1
-
33
-
-
0041624356
-
The largest protein observed to fold by two-state kinetic mechanism does not obey contact-order correlation
-
Jones K, Wittung-Stafshede P. The largest protein observed to fold by two-state kinetic mechanism does not obey contact-order correlation. J Am Chem Soc 2003; 125: 9606-9607.
-
(2003)
J Am Chem Soc
, vol.125
, pp. 9606-9607
-
-
Jones, K.1
Wittung-Stafshede, P.2
-
34
-
-
0037375366
-
Prediction of folding rates and transition-state placement from native-state geometry
-
Micheletti C. Prediction of folding rates and transition-state placement from native-state geometry. Proteins 2003; 51: 74-84.
-
(2003)
Proteins
, vol.51
, pp. 74-84
-
-
Micheletti, C.1
-
35
-
-
0037566828
-
A simple parameter relating sequences with folding rates of small alpha helical proteins
-
Shao H, Peng Y, Zeng Z-H. A simple parameter relating sequences with folding rates of small alpha helical proteins. Prot Pept Lett 2003; 10: 277-280.
-
(2003)
Prot Pept Lett
, vol.10
, pp. 277-280
-
-
Shao, H.1
Peng, Y.2
Zeng, Z.-H.3
-
36
-
-
0034028323
-
Optimal region of average side-chain entropy for fast protein folding
-
Galzitskaya OV, Surin AK, Nakamura H. Optimal region of average side-chain entropy for fast protein folding. Protein Sci 2000; 9: 580-586.
-
(2000)
Protein Sci
, vol.9
, pp. 580-586
-
-
Galzitskaya, O.V.1
Surin, A.K.2
Nakamura, H.3
-
37
-
-
33645027665
-
Entropy capacity determines protein folding
-
Galzitskaya OV, Garbuzynskiy SO. Entropy capacity determines protein folding. Proteins 2006; 63: 144-154.
-
(2006)
Proteins
, vol.63
, pp. 144-154
-
-
Galzitskaya, O.V.1
Garbuzynskiy, S.O.2
-
38
-
-
65649148275
-
Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins
-
Erratum in: J Mol Biol 2010; 401: 153
-
Ferguson A, Liu Z, Chan HS. Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins. J Mol Biol 2009; 389: 619-636. Erratum in: J Mol Biol 2010; 401: 153.
-
(2009)
J Mol Biol
, vol.389
, pp. 619-636
-
-
Ferguson, A.1
Liu, Z.2
Chan, H.S.3
-
39
-
-
33645294148
-
Conformational entropic barriers in topology-dependent protein folding: perspectives from a simple native-centric polymer model
-
Wallin S, Chan HS. Conformational entropic barriers in topology-dependent protein folding: perspectives from a simple native-centric polymer model. J Phys: Condens Matter 2006; 18: S307-S328.
-
(2006)
J Phys: Condens Matter
, vol.18
-
-
Wallin, S.1
Chan, H.S.2
-
40
-
-
79953747234
-
Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models
-
Chan HS, Zhang Z, Wallin S, Liu Z. Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models. Annu Rev Phys Chem 2011; 62: 301-326.
-
(2011)
Annu Rev Phys Chem
, vol.62
, pp. 301-326
-
-
Chan, H.S.1
Zhang, Z.2
Wallin, S.3
Liu, Z.4
-
41
-
-
0033613255
-
Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures
-
Alm E, Baker D. Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures. Proc Natl Acad Sci USA 1999; 96: 11305-11310.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 11305-11310
-
-
Alm, E.1
Baker, D.2
-
42
-
-
39149100599
-
Coarse-grained models of protein folding: toy models or predictive tools?
-
Clementi C. Coarse-grained models of protein folding: toy models or predictive tools? Curr Opin Struct Biol 2008; 18: 10-15.
-
(2008)
Curr Opin Struct Biol
, vol.18
, pp. 10-15
-
-
Clementi, C.1
-
43
-
-
0016696599
-
Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions
-
Taketomi H, Ueda Y, Gō N. Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. Int J Pept Protein Res 1975; 7: 445-459.
-
(1975)
Int J Pept Protein Res
, vol.7
, pp. 445-459
-
-
Taketomi, H.1
Ueda, Y.2
Gō, N.3
-
45
-
-
0018588511
-
Stability of proteins: small globular proteins
-
Privalov PL. Stability of proteins: small globular proteins. Advan Protein Chem 1979; 33: 167.
-
(1979)
Advan Protein Chem
, vol.33
, pp. 167
-
-
Privalov, P.L.1
-
46
-
-
0028958601
-
Characterizing transition states in protein folding: an essential step in the puzzle
-
Fersht AR. Characterizing transition states in protein folding: an essential step in the puzzle. Curr Opin Struct Biol 1995; 5; 79-84.
-
(1995)
Curr Opin Struct Biol
, vol.5
, pp. 79-84
-
-
Fersht, A.R.1
-
47
-
-
24144492709
-
Theoretical study of protein folding: outlining folding nuclei and estimation of protein folding rates
-
Galzitskaya OV, Garbuzynskiy SO, Finkelstein AV. Theoretical study of protein folding: outlining folding nuclei and estimation of protein folding rates. J Phys: Condensed Matter 2005; 17: S1539-S1551.
-
(2005)
J Phys: Condensed Matter
, vol.17
-
-
Galzitskaya, O.V.1
Garbuzynskiy, S.O.2
Finkelstein, A.V.3
-
48
-
-
0035173844
-
The roles of stability and contact order in determining protein folding rates
-
Dinner AR, Karplus M. The roles of stability and contact order in determining protein folding rates. Nat Struct Biol 2001; 8: 21-22.
-
(2001)
Nat Struct Biol
, vol.8
, pp. 21-22
-
-
Dinner, A.R.1
Karplus, M.2
-
49
-
-
0346003776
-
Folding rate prediction based on neural network model
-
Zhang L, Li J, Jiang Z, Xia A. Folding rate prediction based on neural network model. Polymer 2003; 44: 1751-1756.
-
(2003)
Polymer
, vol.44
, pp. 1751-1756
-
-
Zhang, L.1
Li, J.2
Jiang, Z.3
Xia, A.4
-
50
-
-
0037432567
-
Local secondary structure content predicts folding rates for simple, two-state proteins
-
Gong H, Isom DG, Srinivasan R, Rose GD. Local secondary structure content predicts folding rates for simple, two-state proteins. J Mol Biol 2003; 327: 1149-1154.
-
(2003)
J Mol Biol
, vol.327
, pp. 1149-1154
-
-
Gong, H.1
Isom, D.G.2
Srinivasan, R.3
Rose, G.D.4
-
51
-
-
33645240906
-
Prediction of folding rates of small proteins: empirical relations based on length, secondary structure content, residue type, and stability
-
Prabhu NP, Bhuyan AK. Prediction of folding rates of small proteins: empirical relations based on length, secondary structure content, residue type, and stability. Biochemistry 2006; 45: 3805-3812.
-
(2006)
Biochemistry
, vol.45
, pp. 3805-3812
-
-
Prabhu, N.P.1
Bhuyan, A.K.2
-
52
-
-
33747822326
-
FOLD-RATE: prediction of protein folding rates from amino acid sequence
-
Gromiha MM, Thangakani AM, Selvaraj S. FOLD-RATE: prediction of protein folding rates from amino acid sequence. Nucleic Acids Res 2006; 34: W70-W74.
-
(2006)
Nucleic Acids Res
, vol.34
-
-
Gromiha, M.M.1
Thangakani, A.M.2
Selvaraj, S.3
-
53
-
-
33847255036
-
K-Fold: a tool for the prediction of the protein folding kinetic order and rate
-
Capriotti E, Casadio R. K-Fold: a tool for the prediction of the protein folding kinetic order and rate. Bioinformatics 2007; 23: 385-386.
-
(2007)
Bioinformatics
, vol.23
, pp. 385-386
-
-
Capriotti, E.1
Casadio, R.2
-
54
-
-
79251474677
-
Estimation of protein folding rate from monte-carlo simulations and entropy capacity
-
Galzitskaya OV. Estimation of protein folding rate from monte-carlo simulations and entropy capacity. Curr Protein Pept Sci 2010; 11: 523-537.
-
(2010)
Curr Protein Pept Sci
, vol.11
, pp. 523-537
-
-
Galzitskaya, O.V.1
-
57
-
-
0027297217
-
Computation of biopolymers: a general approach to different problems
-
Finkelstein AV, Roytberg MA. Computation of biopolymers: a general approach to different problems. Biosystems 1993; 30: 1-19.
-
(1993)
Biosystems
, vol.30
, pp. 1-19
-
-
Finkelstein, A.V.1
Roytberg, M.A.2
-
59
-
-
0016803266
-
On the rate-determining step for helix-propagation in the helix-coil transition of polypeptides in solution
-
Zana R. On the rate-determining step for helix-propagation in the helix-coil transition of polypeptides in solution. Biopolymers 1975; 14: 2425-2428.
-
(1975)
Biopolymers
, vol.14
, pp. 2425-2428
-
-
Zana, R.1
|