메뉴 건너뛰기




Volumn 80, Issue 12, 2012, Pages 2711-2727

Nucleation-based prediction of the protein folding rate and its correlation with the folding nucleus size

Author keywords

Conformational entropy; Dynamic programming; Folding rate; Size of folding nuclei; Two state and multi state folders

Indexed keywords

PROTEIN;

EID: 84868194447     PISSN: 08873585     EISSN: 10970134     Source Type: Journal    
DOI: 10.1002/prot.24156     Document Type: Article
Times cited : (9)

References (59)
  • 4
    • 0035826234 scopus 로고    scopus 로고
    • Amyloid fibrils from muscle myoglobin
    • Fändrich M, Fletcher MA, Dobson CM. Amyloid fibrils from muscle myoglobin. Nature 2001; 410: 165-166.
    • (2001) Nature , vol.410 , pp. 165-166
    • Fändrich, M.1    Fletcher, M.A.2    Dobson, C.M.3
  • 5
    • 0000050196 scopus 로고
    • From minimal models to real proteins: time scales for protein folding kinetics
    • Thirumalai D. From minimal models to real proteins: time scales for protein folding kinetics. Journal de Physique Orsay Fr 5 1995; 1457-1467.
    • (1995) Journal de Physique Orsay Fr , vol.5 , pp. 1457-1467
    • Thirumalai, D.1
  • 7
    • 0030623529 scopus 로고    scopus 로고
    • Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold
    • Finkelstein AV, Badretdinov AYa. Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold. Folding Des 1997; 2: 115-121.
    • (1997) Folding Des , vol.2 , pp. 115-121
    • Finkelstein, A.V.1    Badretdinov, A.Y.2
  • 8
    • 0032502839 scopus 로고    scopus 로고
    • Contact order, transition state placement and the refolding rates of single domain proteins
    • Plaxco KW, Simons KT, Baker D. Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol 1998; 277: 985-994.
    • (1998) J Mol Biol , vol.277 , pp. 985-994
    • Plaxco, K.W.1    Simons, K.T.2    Baker, D.3
  • 9
    • 0031815749 scopus 로고    scopus 로고
    • How do small single-domain proteins fold?
    • Jackson S. E. How do small single-domain proteins fold? Fold Des 1998; 3: R81-R91.
    • (1998) Fold Des , vol.3
    • Jackson, S.E.1
  • 10
    • 0035850732 scopus 로고    scopus 로고
    • Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model
    • Koga N, Takada S. Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model. J Mol Biol 2001; 313: 171-180.
    • (2001) J Mol Biol , vol.313 , pp. 171-180
    • Koga, N.1    Takada, S.2
  • 12
    • 0033613165 scopus 로고    scopus 로고
    • A simple model for calculating the kinetics of protein folding from three-dimensional structures
    • Muñoz V, Eaton WA. A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc Natl Acad Sci USA 1999; 96: 11311-11316.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 11311-11316
    • Muñoz, V.1    Eaton, W.A.2
  • 13
    • 0033613131 scopus 로고    scopus 로고
    • A theoretical search for folding/unfolding nuclei in three-dimensional protein structures
    • Galzitskaya OV, Finkelstein AV. A theoretical search for folding/unfolding nuclei in three-dimensional protein structures. Proc Natl Acad Sci USA 1999; 96: 11299-11304.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 11299-11304
    • Galzitskaya, O.V.1    Finkelstein, A.V.2
  • 14
    • 0035928731 scopus 로고    scopus 로고
    • Theoretical study of a landscape of protein folding-unfolding pathways. Folding rates at midtransition
    • Ivankov DN, Finkelstein AV. Theoretical study of a landscape of protein folding-unfolding pathways. Folding rates at midtransition. Biochemistry 2001; 40: 9957-9961.
    • (2001) Biochemistry , vol.40 , pp. 9957-9961
    • Ivankov, D.N.1    Finkelstein, A.V.2
  • 15
    • 0036384269 scopus 로고    scopus 로고
    • Simple physical models connect theory and experiment in protein folding kinetics
    • Alm E, Morozov AV, Kortemme T, Baker D. Simple physical models connect theory and experiment in protein folding kinetics. J Mol Biol 2002; 322: 463-476.
    • (2002) J Mol Biol , vol.322 , pp. 463-476
    • Alm, E.1    Morozov, A.V.2    Kortemme, T.3    Baker, D.4
  • 17
    • 77953492654 scopus 로고    scopus 로고
    • Influence of conformational entropy on the protein folding rate
    • Galzitskaya OV. Influence of conformational entropy on the protein folding rate. Entropy 2010; 12: 961-982.
    • (2010) Entropy , vol.12 , pp. 961-982
    • Galzitskaya, O.V.1
  • 18
    • 12944309313 scopus 로고    scopus 로고
    • Scaling of folding times with protein size
    • Naganathan AN, Muñoz V. Scaling of folding times with protein size. J Am Chem Soc 2005; 127: 480-481.
    • (2005) J Am Chem Soc , vol.127 , pp. 480-481
    • Naganathan, A.N.1    Muñoz, V.2
  • 19
    • 0037402639 scopus 로고    scopus 로고
    • Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics
    • Galzitskaya OV, Garbuzynskiy SO, Ivankov DN, Finkelstein AV. Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics. Proteins 2003; 51: 162-166.
    • (2003) Proteins , vol.51 , pp. 162-166
    • Galzitskaya, O.V.1    Garbuzynskiy, S.O.2    Ivankov, D.N.3    Finkelstein, A.V.4
  • 20
    • 68149142712 scopus 로고    scopus 로고
    • Coupling between properties of the protein shape and the rate of protein folding
    • Ivankov DN, Bogatyreva NS, Lobanov MYu, Galzitskaya OV. Coupling between properties of the protein shape and the rate of protein folding. PLoS ONE 2009; 4: e6476.
    • (2009) PLoS ONE , vol.4
    • Ivankov, D.N.1    Bogatyreva, N.S.2    Lobanov, MY.3    Galzitskaya, O.V.4
  • 22
    • 0002006297 scopus 로고
    • Are there pathways for protein folding?
    • Levinthal C. Are there pathways for protein folding? J Chim Phys Chim Biol 1968; 65: 44-45.
    • (1968) J Chim Phys Chim Biol , vol.65 , pp. 44-45
    • Levinthal, C.1
  • 23
    • 0037133574 scopus 로고    scopus 로고
    • How the folding rate constant of simple, single-domain proteins depends on the number of native contacts
    • Makarov DE, Keller CA, Plaxco KW, Metiu H. How the folding rate constant of simple, single-domain proteins depends on the number of native contacts. Proc Natl Acad Sci USA 2002; 99: 3535-3539.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 3535-3539
    • Makarov, D.E.1    Keller, C.A.2    Plaxco, K.W.3    Metiu, H.4
  • 24
    • 0037215268 scopus 로고    scopus 로고
    • The topomer search model: a simple, quantitative theory of two-state protein folding kinetics
    • Makarov DE, Plaxco KW. The topomer search model: a simple, quantitative theory of two-state protein folding kinetics. Protein Sci 2003; 12: 17-26.
    • (2003) Protein Sci , vol.12 , pp. 17-26
    • Makarov, D.E.1    Plaxco, K.W.2
  • 25
    • 19444371858 scopus 로고    scopus 로고
    • A critical assessment of the topomer search model of protein folding using a continuum explicit-chain model with extensive conformational sampling
    • Wallin S, Chan HS. A critical assessment of the topomer search model of protein folding using a continuum explicit-chain model with extensive conformational sampling. Protein Sci 2005; 14: 1643-1660.
    • (2005) Protein Sci , vol.14 , pp. 1643-1660
    • Wallin, S.1    Chan, H.S.2
  • 26
    • 2942689229 scopus 로고    scopus 로고
    • Prediction of protein folding rates from the amino acid sequence-predicted secondary structure
    • Ivankov DN, Finkelstein AV. Prediction of protein folding rates from the amino acid sequence-predicted secondary structure. Proc Natl Acad Sci USA 2004; 101: 8942-8944.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 8942-8944
    • Ivankov, D.N.1    Finkelstein, A.V.2
  • 28
    • 0035967862 scopus 로고    scopus 로고
    • Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction
    • Gromiha MM, Selvaraj S. Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction. J Mol Biol 2001; 310: 27-32.
    • (2001) J Mol Biol , vol.310 , pp. 27-32
    • Gromiha, M.M.1    Selvaraj, S.2
  • 29
    • 17144369578 scopus 로고    scopus 로고
    • Protein folding rates estimated from contact predictions
    • Punta M, Rost B. Protein folding rates estimated from contact predictions. J Mol Biol 2005; 348: 507-512.
    • (2005) J Mol Biol , vol.348 , pp. 507-512
    • Punta, M.1    Rost, B.2
  • 30
    • 0036215854 scopus 로고    scopus 로고
    • Folding rate prediction using total contact distance
    • Zhou H, Zhou Y. Folding rate prediction using total contact distance. Biophys J 2002; 82: 458-463.
    • (2002) Biophys J , vol.82 , pp. 458-463
    • Zhou, H.1    Zhou, Y.2
  • 31
    • 0031790334 scopus 로고    scopus 로고
    • Metastable states and folding free energy barriers
    • Baker D. Metastable states and folding free energy barriers. Nat Struct Biol 1998; 5: 1021-1024.
    • (1998) Nat Struct Biol , vol.5 , pp. 1021-1024
    • Baker, D.1
  • 32
    • 0034652206 scopus 로고    scopus 로고
    • Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism
    • Fersht AR. Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism. Proc Natl Acad Sci USA 2000; 97: 1525-1529.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 1525-1529
    • Fersht, A.R.1
  • 33
    • 0041624356 scopus 로고    scopus 로고
    • The largest protein observed to fold by two-state kinetic mechanism does not obey contact-order correlation
    • Jones K, Wittung-Stafshede P. The largest protein observed to fold by two-state kinetic mechanism does not obey contact-order correlation. J Am Chem Soc 2003; 125: 9606-9607.
    • (2003) J Am Chem Soc , vol.125 , pp. 9606-9607
    • Jones, K.1    Wittung-Stafshede, P.2
  • 34
    • 0037375366 scopus 로고    scopus 로고
    • Prediction of folding rates and transition-state placement from native-state geometry
    • Micheletti C. Prediction of folding rates and transition-state placement from native-state geometry. Proteins 2003; 51: 74-84.
    • (2003) Proteins , vol.51 , pp. 74-84
    • Micheletti, C.1
  • 35
    • 0037566828 scopus 로고    scopus 로고
    • A simple parameter relating sequences with folding rates of small alpha helical proteins
    • Shao H, Peng Y, Zeng Z-H. A simple parameter relating sequences with folding rates of small alpha helical proteins. Prot Pept Lett 2003; 10: 277-280.
    • (2003) Prot Pept Lett , vol.10 , pp. 277-280
    • Shao, H.1    Peng, Y.2    Zeng, Z.-H.3
  • 36
    • 0034028323 scopus 로고    scopus 로고
    • Optimal region of average side-chain entropy for fast protein folding
    • Galzitskaya OV, Surin AK, Nakamura H. Optimal region of average side-chain entropy for fast protein folding. Protein Sci 2000; 9: 580-586.
    • (2000) Protein Sci , vol.9 , pp. 580-586
    • Galzitskaya, O.V.1    Surin, A.K.2    Nakamura, H.3
  • 37
    • 33645027665 scopus 로고    scopus 로고
    • Entropy capacity determines protein folding
    • Galzitskaya OV, Garbuzynskiy SO. Entropy capacity determines protein folding. Proteins 2006; 63: 144-154.
    • (2006) Proteins , vol.63 , pp. 144-154
    • Galzitskaya, O.V.1    Garbuzynskiy, S.O.2
  • 38
    • 65649148275 scopus 로고    scopus 로고
    • Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins
    • Erratum in: J Mol Biol 2010; 401: 153
    • Ferguson A, Liu Z, Chan HS. Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins. J Mol Biol 2009; 389: 619-636. Erratum in: J Mol Biol 2010; 401: 153.
    • (2009) J Mol Biol , vol.389 , pp. 619-636
    • Ferguson, A.1    Liu, Z.2    Chan, H.S.3
  • 39
    • 33645294148 scopus 로고    scopus 로고
    • Conformational entropic barriers in topology-dependent protein folding: perspectives from a simple native-centric polymer model
    • Wallin S, Chan HS. Conformational entropic barriers in topology-dependent protein folding: perspectives from a simple native-centric polymer model. J Phys: Condens Matter 2006; 18: S307-S328.
    • (2006) J Phys: Condens Matter , vol.18
    • Wallin, S.1    Chan, H.S.2
  • 40
    • 79953747234 scopus 로고    scopus 로고
    • Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models
    • Chan HS, Zhang Z, Wallin S, Liu Z. Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models. Annu Rev Phys Chem 2011; 62: 301-326.
    • (2011) Annu Rev Phys Chem , vol.62 , pp. 301-326
    • Chan, H.S.1    Zhang, Z.2    Wallin, S.3    Liu, Z.4
  • 41
    • 0033613255 scopus 로고    scopus 로고
    • Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures
    • Alm E, Baker D. Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures. Proc Natl Acad Sci USA 1999; 96: 11305-11310.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 11305-11310
    • Alm, E.1    Baker, D.2
  • 42
    • 39149100599 scopus 로고    scopus 로고
    • Coarse-grained models of protein folding: toy models or predictive tools?
    • Clementi C. Coarse-grained models of protein folding: toy models or predictive tools? Curr Opin Struct Biol 2008; 18: 10-15.
    • (2008) Curr Opin Struct Biol , vol.18 , pp. 10-15
    • Clementi, C.1
  • 43
    • 0016696599 scopus 로고
    • Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions
    • Taketomi H, Ueda Y, Gō N. Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. Int J Pept Protein Res 1975; 7: 445-459.
    • (1975) Int J Pept Protein Res , vol.7 , pp. 445-459
    • Taketomi, H.1    Ueda, Y.2    Gō, N.3
  • 45
    • 0018588511 scopus 로고
    • Stability of proteins: small globular proteins
    • Privalov PL. Stability of proteins: small globular proteins. Advan Protein Chem 1979; 33: 167.
    • (1979) Advan Protein Chem , vol.33 , pp. 167
    • Privalov, P.L.1
  • 46
    • 0028958601 scopus 로고
    • Characterizing transition states in protein folding: an essential step in the puzzle
    • Fersht AR. Characterizing transition states in protein folding: an essential step in the puzzle. Curr Opin Struct Biol 1995; 5; 79-84.
    • (1995) Curr Opin Struct Biol , vol.5 , pp. 79-84
    • Fersht, A.R.1
  • 47
    • 24144492709 scopus 로고    scopus 로고
    • Theoretical study of protein folding: outlining folding nuclei and estimation of protein folding rates
    • Galzitskaya OV, Garbuzynskiy SO, Finkelstein AV. Theoretical study of protein folding: outlining folding nuclei and estimation of protein folding rates. J Phys: Condensed Matter 2005; 17: S1539-S1551.
    • (2005) J Phys: Condensed Matter , vol.17
    • Galzitskaya, O.V.1    Garbuzynskiy, S.O.2    Finkelstein, A.V.3
  • 48
    • 0035173844 scopus 로고    scopus 로고
    • The roles of stability and contact order in determining protein folding rates
    • Dinner AR, Karplus M. The roles of stability and contact order in determining protein folding rates. Nat Struct Biol 2001; 8: 21-22.
    • (2001) Nat Struct Biol , vol.8 , pp. 21-22
    • Dinner, A.R.1    Karplus, M.2
  • 49
    • 0346003776 scopus 로고    scopus 로고
    • Folding rate prediction based on neural network model
    • Zhang L, Li J, Jiang Z, Xia A. Folding rate prediction based on neural network model. Polymer 2003; 44: 1751-1756.
    • (2003) Polymer , vol.44 , pp. 1751-1756
    • Zhang, L.1    Li, J.2    Jiang, Z.3    Xia, A.4
  • 50
    • 0037432567 scopus 로고    scopus 로고
    • Local secondary structure content predicts folding rates for simple, two-state proteins
    • Gong H, Isom DG, Srinivasan R, Rose GD. Local secondary structure content predicts folding rates for simple, two-state proteins. J Mol Biol 2003; 327: 1149-1154.
    • (2003) J Mol Biol , vol.327 , pp. 1149-1154
    • Gong, H.1    Isom, D.G.2    Srinivasan, R.3    Rose, G.D.4
  • 51
    • 33645240906 scopus 로고    scopus 로고
    • Prediction of folding rates of small proteins: empirical relations based on length, secondary structure content, residue type, and stability
    • Prabhu NP, Bhuyan AK. Prediction of folding rates of small proteins: empirical relations based on length, secondary structure content, residue type, and stability. Biochemistry 2006; 45: 3805-3812.
    • (2006) Biochemistry , vol.45 , pp. 3805-3812
    • Prabhu, N.P.1    Bhuyan, A.K.2
  • 52
    • 33747822326 scopus 로고    scopus 로고
    • FOLD-RATE: prediction of protein folding rates from amino acid sequence
    • Gromiha MM, Thangakani AM, Selvaraj S. FOLD-RATE: prediction of protein folding rates from amino acid sequence. Nucleic Acids Res 2006; 34: W70-W74.
    • (2006) Nucleic Acids Res , vol.34
    • Gromiha, M.M.1    Thangakani, A.M.2    Selvaraj, S.3
  • 53
    • 33847255036 scopus 로고    scopus 로고
    • K-Fold: a tool for the prediction of the protein folding kinetic order and rate
    • Capriotti E, Casadio R. K-Fold: a tool for the prediction of the protein folding kinetic order and rate. Bioinformatics 2007; 23: 385-386.
    • (2007) Bioinformatics , vol.23 , pp. 385-386
    • Capriotti, E.1    Casadio, R.2
  • 54
    • 79251474677 scopus 로고    scopus 로고
    • Estimation of protein folding rate from monte-carlo simulations and entropy capacity
    • Galzitskaya OV. Estimation of protein folding rate from monte-carlo simulations and entropy capacity. Curr Protein Pept Sci 2010; 11: 523-537.
    • (2010) Curr Protein Pept Sci , vol.11 , pp. 523-537
    • Galzitskaya, O.V.1
  • 57
    • 0027297217 scopus 로고
    • Computation of biopolymers: a general approach to different problems
    • Finkelstein AV, Roytberg MA. Computation of biopolymers: a general approach to different problems. Biosystems 1993; 30: 1-19.
    • (1993) Biosystems , vol.30 , pp. 1-19
    • Finkelstein, A.V.1    Roytberg, M.A.2
  • 59
    • 0016803266 scopus 로고
    • On the rate-determining step for helix-propagation in the helix-coil transition of polypeptides in solution
    • Zana R. On the rate-determining step for helix-propagation in the helix-coil transition of polypeptides in solution. Biopolymers 1975; 14: 2425-2428.
    • (1975) Biopolymers , vol.14 , pp. 2425-2428
    • Zana, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.