메뉴 건너뛰기




Volumn 61, Issue 1, 2013, Pages 133-145

Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models

Author keywords

Applications in subject areas; Postsecondary education; Teaching learning strategies

Indexed keywords

ACADEMIC PERFORMANCE; ACCURATE PREDICTION; APPLICATIONS IN SUBJECT AREAS; COMPREHENSIVE EXAMS; CORE COURSE; DATA POINTS; EDUCATIONAL INTERVENTION; ENGINEERING UNDERGRADUATES; MULTI-LAYER PERCEPTION; MULTIPLE LINEAR REGRESSION MODELS; NETWORK MODELS; POSTSECONDARY EDUCATION; PREDICTION ACCURACY; PREDICTOR VARIABLES; RADIAL BASIS FUNCTIONS; RESEARCH TOPICS; STUDENT LEARNING; SUPPORT VECTOR; TEACHING/LEARNING STRATEGY;

EID: 84867619184     PISSN: 03601315     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compedu.2012.08.015     Document Type: Article
Times cited : (307)

References (43)
  • 1
    • 42949132133 scopus 로고    scopus 로고
    • Prediction of university students' academic achievement by linear and logistic models
    • M.N.R. Ayan, and M.T.C. Garcia Prediction of university students' academic achievement by linear and logistic models The Spanish Journal of Psychology 11 2008 275 288
    • (2008) The Spanish Journal of Psychology , vol.11 , pp. 275-288
    • Ayan, M.N.R.1    Garcia, M.T.C.2
  • 4
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee Choosing multiple parameters for support vector machines Machine Learning 46 1-3 2002 131 159
    • (2002) Machine Learning , vol.46 , Issue.13 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 7
    • 0000913324 scopus 로고    scopus 로고
    • SVM torch: Support vector machines for large-scale regression problems
    • R. Collobert, and S. Bengio SVM torch: support vector machines for large-scale regression problems Journal of Machine Learning Research 1 2001 143 150
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 143-150
    • Collobert, R.1    Bengio, S.2
  • 10
    • 77949538967 scopus 로고    scopus 로고
    • A decision tree approach to predictive modeling of student performance in engineering dynamics
    • N. Fang, and J. Lu A decision tree approach to predictive modeling of student performance in engineering dynamics International Journal of Engineering Education 26 1 2010 87 95
    • (2010) International Journal of Engineering Education , vol.26 , Issue.1 , pp. 87-95
    • Fang, N.1    Lu, J.2
  • 12
    • 84870053022 scopus 로고    scopus 로고
    • Artificial neural networks
    • J. Flucher, L.C. Jain, Springer Berlin, Germany
    • J. Fulcher Artificial neural networks J. Flucher, L.C. Jain, Computational intelligence: A compendium 2008 Springer Berlin, Germany 26 30
    • (2008) Computational Intelligence: A Compendium , pp. 26-30
    • Fulcher, J.1
  • 15
    • 0031231810 scopus 로고    scopus 로고
    • A forecast of achievement from student profile data
    • G. Grudnitski A forecast of achievement from student profile data Journal of Accounting Education 15 4 1997 549 558
    • (1997) Journal of Accounting Education , vol.15 , Issue.4 , pp. 549-558
    • Grudnitski, G.1
  • 18
    • 0042591514 scopus 로고    scopus 로고
    • Support vector fuzzy regression machines
    • D.H. Hong, and C. Hwang Support vector fuzzy regression machines Fuzzy Sets and Systems 138 2 2003 271 281
    • (2003) Fuzzy Sets and Systems , vol.138 , Issue.2 , pp. 271-281
    • Hong, D.H.1    Hwang, C.2
  • 19
    • 77956428888 scopus 로고    scopus 로고
    • Prediction of student academic performance in an engineering dynamics course: Development and validation of multivariate regression models
    • S. Huang, and N. Fang Prediction of student academic performance in an engineering dynamics course: development and validation of multivariate regression models International Journal of Engineering Education 26 4 2010 1008 1017
    • (2010) International Journal of Engineering Education , vol.26 , Issue.4 , pp. 1008-1017
    • Huang, S.1    Fang, N.2
  • 20
  • 29
    • 18144394762 scopus 로고    scopus 로고
    • Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms
    • P.F. Pai, and W.C. Hong Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms Electric Power Systems Research 74 3 2005 417 425
    • (2005) Electric Power Systems Research , vol.74 , Issue.3 , pp. 417-425
    • Pai, P.F.1    Hong, W.C.2
  • 30
    • 0002720721 scopus 로고    scopus 로고
    • Motivational and self-regulated learning components of classroom academic performance
    • P.R. Pintrich, and E.V. DeGroot Motivational and self-regulated learning components of classroom academic performance Journal of Educational Psychology 82 1999 33 40
    • (1999) Journal of Educational Psychology , vol.82 , pp. 33-40
    • Pintrich, P.R.1    Degroot, E.V.2
  • 31
    • 1642498953 scopus 로고
    • Predicting achievement early and late in the semester: The role of motivation and use of learning strategies
    • P. Pokay, and P.C. Blumenfeld Predicting achievement early and late in the semester: the role of motivation and use of learning strategies Journal of Educational Psychology 82 1 1990 41 50
    • (1990) Journal of Educational Psychology , vol.82 , Issue.1 , pp. 41-50
    • Pokay, P.1    Blumenfeld, P.C.2
  • 32
    • 0344561061 scopus 로고    scopus 로고
    • Predicting college success: The importance of ability and non-cognitive variables
    • S. Ransdell Predicting college success: the importance of ability and non-cognitive variables International Journal of Educational Research 35 4 2001 357 364
    • (2001) International Journal of Educational Research , vol.35 , Issue.4 , pp. 357-364
    • Ransdell, S.1
  • 35
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A.J. Smola, and B. Scholkopf A tutorial on support vector regression Statistics and Computing 14 3 2004 199 222
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 37
    • 0035582585 scopus 로고    scopus 로고
    • Predicting academic success of first-year engineering students from standardized test scores and psychosocial variables
    • S.R. Ting Predicting academic success of first-year engineering students from standardized test scores and psychosocial variables International Journal of Engineering Education 17 2001 75 80
    • (2001) International Journal of Engineering Education , vol.17 , pp. 75-80
    • Ting, S.R.1
  • 38
    • 0000104644 scopus 로고
    • Noncognitive variables in predicting academic success by race
    • T.J. Tracey, and W.E. Sedlacek Noncognitive variables in predicting academic success by race Measurement and Evaluation in Guidance 16 4 1984 171 178
    • (1984) Measurement and Evaluation in Guidance , vol.16 , Issue.4 , pp. 171-178
    • Tracey, T.J.1    Sedlacek, W.E.2
  • 39
    • 51949102480 scopus 로고    scopus 로고
    • Predicting academic performance by data mining methods
    • J.P. Vandamme, N. Meskens, and J.F. Superby Predicting academic performance by data mining methods Education Economics 15 4 2007 405 419
    • (2007) Education Economics , vol.15 , Issue.4 , pp. 405-419
    • Vandamme, J.P.1    Meskens, N.2    Superby, J.F.3
  • 41
    • 68349101240 scopus 로고    scopus 로고
    • Is modeling of freshman engineering success different from modeling of non-engineering success?
    • C.P. Veenstra, E.L. Dey, and G.D. Herrin Is modeling of freshman engineering success different from modeling of non-engineering success? Journal of Engineering Education 97 3 2008 467 479
    • (2008) Journal of Engineering Education , vol.97 , Issue.3 , pp. 467-479
    • Veenstra, C.P.1    Dey, E.L.2    Herrin, G.D.3
  • 42
    • 84870058772 scopus 로고    scopus 로고
    • Using correlational and prediction data to enhance student achievement in K-12 schools: A practical application for school counselors
    • W.B. Ware, and J.P. Galassi Using correlational and prediction data to enhance student achievement in K-12 schools: a practical application for school counselors Professional School Counseling 9 5 2006 344 356
    • (2006) Professional School Counseling , vol.9 , Issue.5 , pp. 344-356
    • Ware, W.B.1    Galassi, J.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.