-
1
-
-
33947583822
-
Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems
-
Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 2007, 7:292-304.
-
(2007)
Nat. Rev. Immunol.
, vol.7
, pp. 292-304
-
-
Takayanagi, H.1
-
2
-
-
33646889773
-
Bone quality - the material and structural basis of bone strength and fragility
-
Seeman E., Delmas P.D. Bone quality - the material and structural basis of bone strength and fragility. N. Engl. J. Med. 2006, 354:2250-2261.
-
(2006)
N. Engl. J. Med.
, vol.354
, pp. 2250-2261
-
-
Seeman, E.1
Delmas, P.D.2
-
3
-
-
45149127782
-
Osteoimmunology: interactions of the bone and immune system
-
Lorenzo J., et al. Osteoimmunology: interactions of the bone and immune system. Endocr. Rev. 2008, 29:403-440.
-
(2008)
Endocr. Rev.
, vol.29
, pp. 403-440
-
-
Lorenzo, J.1
-
4
-
-
0019847761
-
Role of osteoblasts in hormonal control of bone resorption - a hypothesis
-
Rodan G.A., Martin T.J. Role of osteoblasts in hormonal control of bone resorption - a hypothesis. Calcif. Tissue Int. 1981, 33:349-351.
-
(1981)
Calcif. Tissue Int.
, vol.33
, pp. 349-351
-
-
Rodan, G.A.1
Martin, T.J.2
-
5
-
-
0021684621
-
Osteoclast formation from mononuclear phagocytes: role of bone-forming cells
-
Burger E.H., et al. Osteoclast formation from mononuclear phagocytes: role of bone-forming cells. J. Cell Biol. 1984, 99:1901-1906.
-
(1984)
J. Cell Biol.
, vol.99
, pp. 1901-1906
-
-
Burger, E.H.1
-
6
-
-
0023790708
-
Osteoblastic cells are involved in osteoclast formation
-
Takahashi N., et al. Osteoblastic cells are involved in osteoclast formation. Endocrinology 1988, 123:2600-2602.
-
(1988)
Endocrinology
, vol.123
, pp. 2600-2602
-
-
Takahashi, N.1
-
7
-
-
0033304730
-
Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families
-
Suda T., et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 1999, 20:345-357.
-
(1999)
Endocr. Rev.
, vol.20
, pp. 345-357
-
-
Suda, T.1
-
8
-
-
0031005576
-
Osteoprotegerin: a novel secreted protein involved in the regulation of bone density
-
Simonet W.S., et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997, 89:309-319.
-
(1997)
Cell
, vol.89
, pp. 309-319
-
-
Simonet, W.S.1
-
9
-
-
0032540319
-
Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation
-
Lacey D.L., et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998, 93:165-176.
-
(1998)
Cell
, vol.93
, pp. 165-176
-
-
Lacey, D.L.1
-
10
-
-
0032584208
-
Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL
-
Yasuda H., et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:3597-3602.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 3597-3602
-
-
Yasuda, H.1
-
11
-
-
0030714605
-
A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function
-
Anderson D.M., et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997, 390:175-179.
-
(1997)
Nature
, vol.390
, pp. 175-179
-
-
Anderson, D.M.1
-
12
-
-
14444272043
-
TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells
-
Wong B.R., et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 1997, 272:25190-25194.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 25190-25194
-
-
Wong, B.R.1
-
13
-
-
0030989969
-
Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis
-
Tsuda E., et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun. 1997, 234:137-142.
-
(1997)
Biochem. Biophys. Res. Commun.
, vol.234
, pp. 137-142
-
-
Tsuda, E.1
-
14
-
-
0033611467
-
OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis
-
Kong Y.Y., et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999, 397:315-323.
-
(1999)
Nature
, vol.397
, pp. 315-323
-
-
Kong, Y.Y.1
-
15
-
-
0033568341
-
RANK is essential for osteoclast and lymph node development
-
Dougall W.C., et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999, 13:2412-2424.
-
(1999)
Genes Dev.
, vol.13
, pp. 2412-2424
-
-
Dougall, W.C.1
-
16
-
-
12944262423
-
RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism
-
Li J., et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:1566-1571.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 1566-1571
-
-
Li, J.1
-
17
-
-
18444379071
-
Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis
-
Mizuno A., et al. Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. J. Bone Miner. Metab. 2002, 20:337-344.
-
(2002)
J. Bone Miner. Metab.
, vol.20
, pp. 337-344
-
-
Mizuno, A.1
-
18
-
-
0032079445
-
Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification
-
Bucay N., et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998, 12:1260-1268.
-
(1998)
Genes Dev.
, vol.12
, pp. 1260-1268
-
-
Bucay, N.1
-
19
-
-
0032577903
-
Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin
-
Mizuno A., et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun. 1998, 247:610-615.
-
(1998)
Biochem. Biophys. Res. Commun.
, vol.247
, pp. 610-615
-
-
Mizuno, A.1
-
20
-
-
0034698926
-
Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis
-
Min H., et al. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J. Exp. Med. 2000, 192:463-474.
-
(2000)
J. Exp. Med.
, vol.192
, pp. 463-474
-
-
Min, H.1
-
21
-
-
69249229479
-
Osteoimmunology: crosstalk between the immune and bone systems
-
Nakashima T., Takayanagi H. Osteoimmunology: crosstalk between the immune and bone systems. J. Clin. Immunol. 2009, 29:555-567.
-
(2009)
J. Clin. Immunol.
, vol.29
, pp. 555-567
-
-
Nakashima, T.1
Takayanagi, H.2
-
22
-
-
0034618580
-
Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-κB ligand: modulation of the expression by osteotropic factors and cytokines
-
Nakashima T., et al. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-κB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem. Biophys. Res. Commun. 2000, 275:768-775.
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.275
, pp. 768-775
-
-
Nakashima, T.1
-
23
-
-
33845994375
-
Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-κB ligand
-
Hikita A., et al. Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-κB ligand. J. Biol. Chem. 2006, 281:36846-36855.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 36846-36855
-
-
Hikita, A.1
-
24
-
-
0034672166
-
An adherent condition is required for formation of multinuclear osteoclasts in the presence of macrophage colony-stimulating factor and receptor activator of nuclear factor κB ligand
-
Miyamoto T., et al. An adherent condition is required for formation of multinuclear osteoclasts in the presence of macrophage colony-stimulating factor and receptor activator of nuclear factor κB ligand. Blood 2000, 96:4335-4343.
-
(2000)
Blood
, vol.96
, pp. 4335-4343
-
-
Miyamoto, T.1
-
25
-
-
0036218666
-
RANK-L and RANK: T cells, bone loss, and mammalian evolution
-
Theill L.E., et al. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol. 2002, 20:795-823.
-
(2002)
Annu. Rev. Immunol.
, vol.20
, pp. 795-823
-
-
Theill, L.E.1
-
26
-
-
79251493453
-
The amazing osteocyte
-
Bonewald L.F. The amazing osteocyte. J. Bone Miner. Res. 2011, 26:229-238.
-
(2011)
J. Bone Miner. Res.
, vol.26
, pp. 229-238
-
-
Bonewald, L.F.1
-
27
-
-
0028077287
-
Effects of osteocytes on osteoinduction in the autogenous rib graft in the rat mandible
-
Kamijou T., et al. Effects of osteocytes on osteoinduction in the autogenous rib graft in the rat mandible. Bone 1994, 15:629-637.
-
(1994)
Bone
, vol.15
, pp. 629-637
-
-
Kamijou, T.1
-
28
-
-
0025158394
-
Bone resorption by isolated osteoclasts in living versus devitalized bone: differences in mode and extent and the effects of human recombinant tissue inhibitor of metalloproteinases
-
Shimizu H., et al. Bone resorption by isolated osteoclasts in living versus devitalized bone: differences in mode and extent and the effects of human recombinant tissue inhibitor of metalloproteinases. J. Bone Miner. Res. 1990, 5:411-418.
-
(1990)
J. Bone Miner. Res.
, vol.5
, pp. 411-418
-
-
Shimizu, H.1
-
29
-
-
0032506010
-
Dissociation between bone resorption and bone formation in osteopenic transgenic mice
-
Corral D.A., et al. Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:13835-13840.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 13835-13840
-
-
Corral, D.A.1
-
30
-
-
67649770270
-
Commitment to the osteoblast lineage is not required for RANKL gene expression
-
Galli C., et al. Commitment to the osteoblast lineage is not required for RANKL gene expression. J. Biol. Chem. 2009, 284:12654-12662.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 12654-12662
-
-
Galli, C.1
-
31
-
-
30744436806
-
Isolated primary osteocytes express functional gap junctions in vitro
-
Gu G., et al. Isolated primary osteocytes express functional gap junctions in vitro. Cell Tissue Res. 2006, 323:263-271.
-
(2006)
Cell Tissue Res.
, vol.323
, pp. 263-271
-
-
Gu, G.1
-
32
-
-
68849117424
-
Identification of differentially expressed genes between osteoblasts and osteocytes
-
Paic F., et al. Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 2009, 45:682-692.
-
(2009)
Bone
, vol.45
, pp. 682-692
-
-
Paic, F.1
-
33
-
-
80053938104
-
Evidence for osteocyte regulation of bone homeostasis through RANKL expression
-
Nakashima T., et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 2011, 17:1231-1234.
-
(2011)
Nat. Med.
, vol.17
, pp. 1231-1234
-
-
Nakashima, T.1
-
34
-
-
33646889773
-
Bone quality - the material and structural basis of bone strength and fragility
-
Seeman E., Delmas P.D. Bone quality - the material and structural basis of bone strength and fragility. N. Engl. J. Med. 2006, 354:2250-2261.
-
(2006)
N. Engl. J. Med.
, vol.354
, pp. 2250-2261
-
-
Seeman, E.1
Delmas, P.D.2
-
35
-
-
77953407742
-
Osteocyte Wnt/β-catenin signaling is required for normal bone homeostasis
-
Kramer I., et al. Osteocyte Wnt/β-catenin signaling is required for normal bone homeostasis. Mol. Cell. Biol. 2010, 30:3071-3085.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 3071-3085
-
-
Kramer, I.1
-
36
-
-
80053978532
-
Matrix-embedded cells control osteoclast formation
-
Xiong J., et al. Matrix-embedded cells control osteoclast formation. Nat. Med. 2011, 17:1235-1241.
-
(2011)
Nat. Med.
, vol.17
, pp. 1235-1241
-
-
Xiong, J.1
-
37
-
-
33644975844
-
Buried alive: how osteoblasts become osteocytes
-
Franz-Odendaal T.A., et al. Buried alive: how osteoblasts become osteocytes. Dev. Dyn. 2006, 235:176-190.
-
(2006)
Dev. Dyn.
, vol.235
, pp. 176-190
-
-
Franz-Odendaal, T.A.1
-
38
-
-
51449111663
-
Control of bone mass and remodeling by PTH receptor signaling in osteocytes
-
O'Brien C.A., et al. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS ONE 2008, 3:e2942.
-
(2008)
PLoS ONE
, vol.3
-
-
O'Brien, C.A.1
-
39
-
-
0034718609
-
Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene
-
Kim N., et al. Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:10905-10910.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 10905-10910
-
-
Kim, N.1
-
40
-
-
34547521058
-
Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL
-
Sobacchi C., et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat. Genet. 2007, 39:960-962.
-
(2007)
Nat. Genet.
, vol.39
, pp. 960-962
-
-
Sobacchi, C.1
-
41
-
-
0033561039
-
TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling
-
Lomaga M.A., et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999, 13:1015-1024.
-
(1999)
Genes Dev.
, vol.13
, pp. 1015-1024
-
-
Lomaga, M.A.1
-
42
-
-
6544270833
-
Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice
-
Naito A., et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 1999, 4:353-362.
-
(1999)
Genes Cells
, vol.4
, pp. 353-362
-
-
Naito, A.1
-
43
-
-
17644393474
-
The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis
-
Wada T., et al. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat. Med. 2005, 11:394-399.
-
(2005)
Nat. Med.
, vol.11
, pp. 394-399
-
-
Wada, T.1
-
44
-
-
26444579354
-
FHL2 inhibits the activated osteoclast in a TRAF6-dependent manner
-
Bai S., et al. FHL2 inhibits the activated osteoclast in a TRAF6-dependent manner. J. Clin. Invest. 2005, 115:2742-2751.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 2742-2751
-
-
Bai, S.1
-
45
-
-
15444357762
-
Requirement for NF-κB in osteoclast and B-cell development
-
Franzoso G., et al. Requirement for NF-κB in osteoclast and B-cell development. Genes Dev. 1997, 11:3482-3496.
-
(1997)
Genes Dev.
, vol.11
, pp. 3482-3496
-
-
Franzoso, G.1
-
46
-
-
0030715563
-
Osteopetrosis in mice lacking NF-κB1 and NF-κB2
-
Iotsova V., et al. Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nat. Med. 1997, 3:1285-1289.
-
(1997)
Nat. Med.
, vol.3
, pp. 1285-1289
-
-
Iotsova, V.1
-
47
-
-
28544434439
-
Fos/AP-1 proteins in bone and the immune system
-
Wagner E.F., Eferl R. Fos/AP-1 proteins in bone and the immune system. Immunol. Rev. 2005, 208:126-140.
-
(2005)
Immunol. Rev.
, vol.208
, pp. 126-140
-
-
Wagner, E.F.1
Eferl, R.2
-
48
-
-
33845539490
-
Regulation of osteoclast differentiation and function by the CaMK-CREB pathway
-
Sato K., et al. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat. Med. 2006, 12:1410-1416.
-
(2006)
Nat. Med.
, vol.12
, pp. 1410-1416
-
-
Sato, K.1
-
49
-
-
18744366041
-
Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling for terminal differentiation of osteoclasts
-
Takayanagi H., et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling for terminal differentiation of osteoclasts. Dev. Cell 2002, 3:889-901.
-
(2002)
Dev. Cell
, vol.3
, pp. 889-901
-
-
Takayanagi, H.1
-
50
-
-
0036234543
-
NFAT signaling: choreographing the social lives of cells
-
Crabtree G.R., Olson E.N. NFAT signaling: choreographing the social lives of cells. Cell 2002, 109(Suppl.):S67-S79.
-
(2002)
Cell
, vol.109
, Issue.SUPPL.
-
-
Crabtree, G.R.1
Olson, E.N.2
-
51
-
-
27744432009
-
Autoamplification of NFATc1 expression determines its essential role in bone homeostasis
-
Asagiri M., et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 2005, 202:1261-1269.
-
(2005)
J. Exp. Med.
, vol.202
, pp. 1261-1269
-
-
Asagiri, M.1
-
52
-
-
55849088412
-
NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism
-
Aliprantis A.O., et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J. Clin. Invest. 2008, 118:3775-3789.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 3775-3789
-
-
Aliprantis, A.O.1
-
53
-
-
69949148448
-
Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis
-
Zhao B., et al. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat. Med. 2009, 15:1066-1071.
-
(2009)
Nat. Med.
, vol.15
, pp. 1066-1071
-
-
Zhao, B.1
-
54
-
-
77951074209
-
The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis
-
Miyauchi Y., et al. The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. J. Exp. Med. 2010, 207:751-762.
-
(2010)
J. Exp. Med.
, vol.207
, pp. 751-762
-
-
Miyauchi, Y.1
-
55
-
-
34147132897
-
MafB negatively regulates RANKL-mediated osteoclast differentiation
-
Kim K., et al. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 2007, 109:3253-3259.
-
(2007)
Blood
, vol.109
, pp. 3253-3259
-
-
Kim, K.1
-
56
-
-
77649262903
-
Blimp1-mediated repression of negative regulators is required for osteoclast differentiation
-
Nishikawa K., et al. Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:3117-3122.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 3117-3122
-
-
Nishikawa, K.1
-
57
-
-
11144354330
-
Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis
-
Koga T., et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004, 428:758-763.
-
(2004)
Nature
, vol.428
, pp. 758-763
-
-
Koga, T.1
-
58
-
-
80052388933
-
OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice
-
Barrow A.D., et al. OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. J. Clin. Invest. 2011, 121:3505-3516.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 3505-3516
-
-
Barrow, A.D.1
-
59
-
-
48349105543
-
DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk
-
Zou W., et al. DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk. Mol. Cell 2008, 31:422-431.
-
(2008)
Mol. Cell
, vol.31
, pp. 422-431
-
-
Zou, W.1
-
60
-
-
39749180445
-
Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals
-
Shinohara M., et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 2008, 132:794-806.
-
(2008)
Cell
, vol.132
, pp. 794-806
-
-
Shinohara, M.1
-
61
-
-
0021285154
-
Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint
-
Bromley M., Woolley D.E. Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum. 1984, 27:968-975.
-
(1984)
Arthritis Rheum.
, vol.27
, pp. 968-975
-
-
Bromley, M.1
Woolley, D.E.2
-
62
-
-
0031894140
-
Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis
-
Gravallese E.M., et al. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am. J. Pathol. 1998, 152:943-951.
-
(1998)
Am. J. Pathol.
, vol.152
, pp. 943-951
-
-
Gravallese, E.M.1
-
63
-
-
0031576524
-
A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis
-
Takayanagi H., et al. A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis. Biochem. Biophys. Res. Commun. 1997, 240:279-286.
-
(1997)
Biochem. Biophys. Res. Commun.
, vol.240
, pp. 279-286
-
-
Takayanagi, H.1
-
64
-
-
0034121039
-
Involvement of receptor activator of nuclear factor κB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis
-
Takayanagi H., et al. Involvement of receptor activator of nuclear factor κB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2000, 43:259-269.
-
(2000)
Arthritis Rheum.
, vol.43
, pp. 259-269
-
-
Takayanagi, H.1
-
65
-
-
0034122050
-
Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor
-
Gravallese E.M., et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000, 43:250-258.
-
(2000)
Arthritis Rheum.
, vol.43
, pp. 250-258
-
-
Gravallese, E.M.1
-
66
-
-
0033581952
-
Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand
-
Kong Y.Y., et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999, 402:304-309.
-
(1999)
Nature
, vol.402
, pp. 304-309
-
-
Kong, Y.Y.1
-
67
-
-
73349096273
-
Rheumatoid arthritis associated with osteopetrosis
-
Kadono Y., et al. Rheumatoid arthritis associated with osteopetrosis. Mod. Rheumatol. 2009, 19:687-690.
-
(2009)
Mod. Rheumatol.
, vol.19
, pp. 687-690
-
-
Kadono, Y.1
-
68
-
-
0035153246
-
TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis
-
Pettit A.R., et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol. 2001, 159:1689-1699.
-
(2001)
Am. J. Pathol.
, vol.159
, pp. 1689-1699
-
-
Pettit, A.R.1
-
69
-
-
51349092893
-
The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator
-
Hikosaka Y., et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 2008, 29:438-450.
-
(2008)
Immunity
, vol.29
, pp. 438-450
-
-
Hikosaka, Y.1
-
70
-
-
51349111243
-
The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance
-
Akiyama T., et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 2008, 29:423-437.
-
(2008)
Immunity
, vol.29
, pp. 423-437
-
-
Akiyama, T.1
-
71
-
-
0034730327
-
The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development
-
Fata J.E., et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 2000, 103:41-50.
-
(2000)
Cell
, vol.103
, pp. 41-50
-
-
Fata, J.E.1
-
72
-
-
33845543666
-
Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells
-
Loser K., et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat. Med. 2006, 12:1372-1379.
-
(2006)
Nat. Med.
, vol.12
, pp. 1372-1379
-
-
Loser, K.1
-
73
-
-
34250336454
-
- inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla
-
- inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J. Exp. Med. 2007, 204:1267-1272.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1267-1272
-
-
Rossi, S.W.1
-
74
-
-
1642526641
-
hi osteoclast precursors but is essential for mature osteoclast formation in TNFα-mediated inflammatory arthritis
-
hi osteoclast precursors but is essential for mature osteoclast formation in TNFα-mediated inflammatory arthritis. J. Bone Miner. Res. 2004, 19:207-213.
-
(2004)
J. Bone Miner. Res.
, vol.19
, pp. 207-213
-
-
Li, P.1
-
75
-
-
78149284013
-
Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer
-
Schramek D., et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 2010, 468:98-102.
-
(2010)
Nature
, vol.468
, pp. 98-102
-
-
Schramek, D.1
-
76
-
-
78149284767
-
RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis
-
Gonzalez-Suarez E., et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 2010, 468:103-107.
-
(2010)
Nature
, vol.468
, pp. 103-107
-
-
Gonzalez-Suarez, E.1
-
77
-
-
33744921357
-
Resorption of auditory ossicles and hearing loss in mice lacking osteoprotegerin
-
Kanzaki S., et al. Resorption of auditory ossicles and hearing loss in mice lacking osteoprotegerin. Bone 2006, 39:414-419.
-
(2006)
Bone
, vol.39
, pp. 414-419
-
-
Kanzaki, S.1
-
78
-
-
46349084493
-
Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations
-
Guerrini M.M., et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am. J. Hum. Genet. 2008, 83:64-76.
-
(2008)
Am. J. Hum. Genet.
, vol.83
, pp. 64-76
-
-
Guerrini, M.M.1
-
79
-
-
0033987358
-
Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis
-
Hughes A.E., et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat. Genet. 2000, 24:45-48.
-
(2000)
Nat. Genet.
, vol.24
, pp. 45-48
-
-
Hughes, A.E.1
-
80
-
-
0036778369
-
Familial expansile osteolysis in a large Spanish kindred resulting from an insertion mutation in the TNFRSF11A gene
-
Palenzuela L., et al. Familial expansile osteolysis in a large Spanish kindred resulting from an insertion mutation in the TNFRSF11A gene. J. Med. Genet. 2002, 39:E67.
-
(2002)
J. Med. Genet.
, vol.39
-
-
Palenzuela, L.1
-
81
-
-
0036133351
-
Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis
-
Whyte M.P., Hughes A.E. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J. Bone Miner. Res. 2002, 17:26-29.
-
(2002)
J. Bone Miner. Res.
, vol.17
, pp. 26-29
-
-
Whyte, M.P.1
Hughes, A.E.2
-
82
-
-
84856190866
-
A non-synonymous TNFRSF11A variation increases NFκB activity and the severity of Paget's disease
-
Gianfrancesco F., et al. A non-synonymous TNFRSF11A variation increases NFκB activity and the severity of Paget's disease. J. Bone Miner. Res. 2012, 27:443-452.
-
(2012)
J. Bone Miner. Res.
, vol.27
, pp. 443-452
-
-
Gianfrancesco, F.1
-
83
-
-
0037130183
-
Osteoprotegerin deficiency and juvenile Paget's disease
-
Whyte M.P., et al. Osteoprotegerin deficiency and juvenile Paget's disease. N. Engl. J. Med. 2002, 347:175-184.
-
(2002)
N. Engl. J. Med.
, vol.347
, pp. 175-184
-
-
Whyte, M.P.1
-
84
-
-
18544371504
-
A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype
-
Cundy T., et al. A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum. Mol. Genet. 2002, 11:2119-2127.
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 2119-2127
-
-
Cundy, T.1
-
85
-
-
10744230044
-
Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype
-
Chong B., et al. Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype. J. Bone Miner. Res. 2003, 18:2095-2104.
-
(2003)
J. Bone Miner. Res.
, vol.18
, pp. 2095-2104
-
-
Chong, B.1
|