메뉴 건너뛰기




Volumn 23, Issue 11, 2012, Pages 582-590

New insights into osteoclastogenic signaling mechanisms

Author keywords

[No Author keywords available]

Indexed keywords

OSTEOCLAST DIFFERENTIATION FACTOR;

EID: 84867142035     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2012.05.005     Document Type: Review
Times cited : (281)

References (85)
  • 1
    • 33947583822 scopus 로고    scopus 로고
    • Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems
    • Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 2007, 7:292-304.
    • (2007) Nat. Rev. Immunol. , vol.7 , pp. 292-304
    • Takayanagi, H.1
  • 2
    • 33646889773 scopus 로고    scopus 로고
    • Bone quality - the material and structural basis of bone strength and fragility
    • Seeman E., Delmas P.D. Bone quality - the material and structural basis of bone strength and fragility. N. Engl. J. Med. 2006, 354:2250-2261.
    • (2006) N. Engl. J. Med. , vol.354 , pp. 2250-2261
    • Seeman, E.1    Delmas, P.D.2
  • 3
    • 45149127782 scopus 로고    scopus 로고
    • Osteoimmunology: interactions of the bone and immune system
    • Lorenzo J., et al. Osteoimmunology: interactions of the bone and immune system. Endocr. Rev. 2008, 29:403-440.
    • (2008) Endocr. Rev. , vol.29 , pp. 403-440
    • Lorenzo, J.1
  • 4
    • 0019847761 scopus 로고
    • Role of osteoblasts in hormonal control of bone resorption - a hypothesis
    • Rodan G.A., Martin T.J. Role of osteoblasts in hormonal control of bone resorption - a hypothesis. Calcif. Tissue Int. 1981, 33:349-351.
    • (1981) Calcif. Tissue Int. , vol.33 , pp. 349-351
    • Rodan, G.A.1    Martin, T.J.2
  • 5
    • 0021684621 scopus 로고
    • Osteoclast formation from mononuclear phagocytes: role of bone-forming cells
    • Burger E.H., et al. Osteoclast formation from mononuclear phagocytes: role of bone-forming cells. J. Cell Biol. 1984, 99:1901-1906.
    • (1984) J. Cell Biol. , vol.99 , pp. 1901-1906
    • Burger, E.H.1
  • 6
    • 0023790708 scopus 로고
    • Osteoblastic cells are involved in osteoclast formation
    • Takahashi N., et al. Osteoblastic cells are involved in osteoclast formation. Endocrinology 1988, 123:2600-2602.
    • (1988) Endocrinology , vol.123 , pp. 2600-2602
    • Takahashi, N.1
  • 7
    • 0033304730 scopus 로고    scopus 로고
    • Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families
    • Suda T., et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 1999, 20:345-357.
    • (1999) Endocr. Rev. , vol.20 , pp. 345-357
    • Suda, T.1
  • 8
    • 0031005576 scopus 로고    scopus 로고
    • Osteoprotegerin: a novel secreted protein involved in the regulation of bone density
    • Simonet W.S., et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997, 89:309-319.
    • (1997) Cell , vol.89 , pp. 309-319
    • Simonet, W.S.1
  • 9
    • 0032540319 scopus 로고    scopus 로고
    • Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation
    • Lacey D.L., et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998, 93:165-176.
    • (1998) Cell , vol.93 , pp. 165-176
    • Lacey, D.L.1
  • 10
    • 0032584208 scopus 로고    scopus 로고
    • Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL
    • Yasuda H., et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:3597-3602.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 3597-3602
    • Yasuda, H.1
  • 11
    • 0030714605 scopus 로고    scopus 로고
    • A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function
    • Anderson D.M., et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997, 390:175-179.
    • (1997) Nature , vol.390 , pp. 175-179
    • Anderson, D.M.1
  • 12
    • 14444272043 scopus 로고    scopus 로고
    • TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells
    • Wong B.R., et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 1997, 272:25190-25194.
    • (1997) J. Biol. Chem. , vol.272 , pp. 25190-25194
    • Wong, B.R.1
  • 13
    • 0030989969 scopus 로고    scopus 로고
    • Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis
    • Tsuda E., et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun. 1997, 234:137-142.
    • (1997) Biochem. Biophys. Res. Commun. , vol.234 , pp. 137-142
    • Tsuda, E.1
  • 14
    • 0033611467 scopus 로고    scopus 로고
    • OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis
    • Kong Y.Y., et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999, 397:315-323.
    • (1999) Nature , vol.397 , pp. 315-323
    • Kong, Y.Y.1
  • 15
    • 0033568341 scopus 로고    scopus 로고
    • RANK is essential for osteoclast and lymph node development
    • Dougall W.C., et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999, 13:2412-2424.
    • (1999) Genes Dev. , vol.13 , pp. 2412-2424
    • Dougall, W.C.1
  • 16
    • 12944262423 scopus 로고    scopus 로고
    • RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism
    • Li J., et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:1566-1571.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 1566-1571
    • Li, J.1
  • 17
    • 18444379071 scopus 로고    scopus 로고
    • Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis
    • Mizuno A., et al. Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. J. Bone Miner. Metab. 2002, 20:337-344.
    • (2002) J. Bone Miner. Metab. , vol.20 , pp. 337-344
    • Mizuno, A.1
  • 18
    • 0032079445 scopus 로고    scopus 로고
    • Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification
    • Bucay N., et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998, 12:1260-1268.
    • (1998) Genes Dev. , vol.12 , pp. 1260-1268
    • Bucay, N.1
  • 19
    • 0032577903 scopus 로고    scopus 로고
    • Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin
    • Mizuno A., et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun. 1998, 247:610-615.
    • (1998) Biochem. Biophys. Res. Commun. , vol.247 , pp. 610-615
    • Mizuno, A.1
  • 20
    • 0034698926 scopus 로고    scopus 로고
    • Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis
    • Min H., et al. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J. Exp. Med. 2000, 192:463-474.
    • (2000) J. Exp. Med. , vol.192 , pp. 463-474
    • Min, H.1
  • 21
    • 69249229479 scopus 로고    scopus 로고
    • Osteoimmunology: crosstalk between the immune and bone systems
    • Nakashima T., Takayanagi H. Osteoimmunology: crosstalk between the immune and bone systems. J. Clin. Immunol. 2009, 29:555-567.
    • (2009) J. Clin. Immunol. , vol.29 , pp. 555-567
    • Nakashima, T.1    Takayanagi, H.2
  • 22
    • 0034618580 scopus 로고    scopus 로고
    • Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-κB ligand: modulation of the expression by osteotropic factors and cytokines
    • Nakashima T., et al. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-κB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem. Biophys. Res. Commun. 2000, 275:768-775.
    • (2000) Biochem. Biophys. Res. Commun. , vol.275 , pp. 768-775
    • Nakashima, T.1
  • 23
    • 33845994375 scopus 로고    scopus 로고
    • Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-κB ligand
    • Hikita A., et al. Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-κB ligand. J. Biol. Chem. 2006, 281:36846-36855.
    • (2006) J. Biol. Chem. , vol.281 , pp. 36846-36855
    • Hikita, A.1
  • 24
    • 0034672166 scopus 로고    scopus 로고
    • An adherent condition is required for formation of multinuclear osteoclasts in the presence of macrophage colony-stimulating factor and receptor activator of nuclear factor κB ligand
    • Miyamoto T., et al. An adherent condition is required for formation of multinuclear osteoclasts in the presence of macrophage colony-stimulating factor and receptor activator of nuclear factor κB ligand. Blood 2000, 96:4335-4343.
    • (2000) Blood , vol.96 , pp. 4335-4343
    • Miyamoto, T.1
  • 25
    • 0036218666 scopus 로고    scopus 로고
    • RANK-L and RANK: T cells, bone loss, and mammalian evolution
    • Theill L.E., et al. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol. 2002, 20:795-823.
    • (2002) Annu. Rev. Immunol. , vol.20 , pp. 795-823
    • Theill, L.E.1
  • 26
    • 79251493453 scopus 로고    scopus 로고
    • The amazing osteocyte
    • Bonewald L.F. The amazing osteocyte. J. Bone Miner. Res. 2011, 26:229-238.
    • (2011) J. Bone Miner. Res. , vol.26 , pp. 229-238
    • Bonewald, L.F.1
  • 27
    • 0028077287 scopus 로고
    • Effects of osteocytes on osteoinduction in the autogenous rib graft in the rat mandible
    • Kamijou T., et al. Effects of osteocytes on osteoinduction in the autogenous rib graft in the rat mandible. Bone 1994, 15:629-637.
    • (1994) Bone , vol.15 , pp. 629-637
    • Kamijou, T.1
  • 28
    • 0025158394 scopus 로고
    • Bone resorption by isolated osteoclasts in living versus devitalized bone: differences in mode and extent and the effects of human recombinant tissue inhibitor of metalloproteinases
    • Shimizu H., et al. Bone resorption by isolated osteoclasts in living versus devitalized bone: differences in mode and extent and the effects of human recombinant tissue inhibitor of metalloproteinases. J. Bone Miner. Res. 1990, 5:411-418.
    • (1990) J. Bone Miner. Res. , vol.5 , pp. 411-418
    • Shimizu, H.1
  • 29
    • 0032506010 scopus 로고    scopus 로고
    • Dissociation between bone resorption and bone formation in osteopenic transgenic mice
    • Corral D.A., et al. Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:13835-13840.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 13835-13840
    • Corral, D.A.1
  • 30
    • 67649770270 scopus 로고    scopus 로고
    • Commitment to the osteoblast lineage is not required for RANKL gene expression
    • Galli C., et al. Commitment to the osteoblast lineage is not required for RANKL gene expression. J. Biol. Chem. 2009, 284:12654-12662.
    • (2009) J. Biol. Chem. , vol.284 , pp. 12654-12662
    • Galli, C.1
  • 31
    • 30744436806 scopus 로고    scopus 로고
    • Isolated primary osteocytes express functional gap junctions in vitro
    • Gu G., et al. Isolated primary osteocytes express functional gap junctions in vitro. Cell Tissue Res. 2006, 323:263-271.
    • (2006) Cell Tissue Res. , vol.323 , pp. 263-271
    • Gu, G.1
  • 32
    • 68849117424 scopus 로고    scopus 로고
    • Identification of differentially expressed genes between osteoblasts and osteocytes
    • Paic F., et al. Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 2009, 45:682-692.
    • (2009) Bone , vol.45 , pp. 682-692
    • Paic, F.1
  • 33
    • 80053938104 scopus 로고    scopus 로고
    • Evidence for osteocyte regulation of bone homeostasis through RANKL expression
    • Nakashima T., et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 2011, 17:1231-1234.
    • (2011) Nat. Med. , vol.17 , pp. 1231-1234
    • Nakashima, T.1
  • 34
    • 33646889773 scopus 로고    scopus 로고
    • Bone quality - the material and structural basis of bone strength and fragility
    • Seeman E., Delmas P.D. Bone quality - the material and structural basis of bone strength and fragility. N. Engl. J. Med. 2006, 354:2250-2261.
    • (2006) N. Engl. J. Med. , vol.354 , pp. 2250-2261
    • Seeman, E.1    Delmas, P.D.2
  • 35
    • 77953407742 scopus 로고    scopus 로고
    • Osteocyte Wnt/β-catenin signaling is required for normal bone homeostasis
    • Kramer I., et al. Osteocyte Wnt/β-catenin signaling is required for normal bone homeostasis. Mol. Cell. Biol. 2010, 30:3071-3085.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 3071-3085
    • Kramer, I.1
  • 36
    • 80053978532 scopus 로고    scopus 로고
    • Matrix-embedded cells control osteoclast formation
    • Xiong J., et al. Matrix-embedded cells control osteoclast formation. Nat. Med. 2011, 17:1235-1241.
    • (2011) Nat. Med. , vol.17 , pp. 1235-1241
    • Xiong, J.1
  • 37
    • 33644975844 scopus 로고    scopus 로고
    • Buried alive: how osteoblasts become osteocytes
    • Franz-Odendaal T.A., et al. Buried alive: how osteoblasts become osteocytes. Dev. Dyn. 2006, 235:176-190.
    • (2006) Dev. Dyn. , vol.235 , pp. 176-190
    • Franz-Odendaal, T.A.1
  • 38
    • 51449111663 scopus 로고    scopus 로고
    • Control of bone mass and remodeling by PTH receptor signaling in osteocytes
    • O'Brien C.A., et al. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS ONE 2008, 3:e2942.
    • (2008) PLoS ONE , vol.3
    • O'Brien, C.A.1
  • 39
    • 0034718609 scopus 로고    scopus 로고
    • Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene
    • Kim N., et al. Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:10905-10910.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 10905-10910
    • Kim, N.1
  • 40
    • 34547521058 scopus 로고    scopus 로고
    • Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL
    • Sobacchi C., et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat. Genet. 2007, 39:960-962.
    • (2007) Nat. Genet. , vol.39 , pp. 960-962
    • Sobacchi, C.1
  • 41
    • 0033561039 scopus 로고    scopus 로고
    • TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling
    • Lomaga M.A., et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999, 13:1015-1024.
    • (1999) Genes Dev. , vol.13 , pp. 1015-1024
    • Lomaga, M.A.1
  • 42
    • 6544270833 scopus 로고    scopus 로고
    • Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice
    • Naito A., et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 1999, 4:353-362.
    • (1999) Genes Cells , vol.4 , pp. 353-362
    • Naito, A.1
  • 43
    • 17644393474 scopus 로고    scopus 로고
    • The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis
    • Wada T., et al. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat. Med. 2005, 11:394-399.
    • (2005) Nat. Med. , vol.11 , pp. 394-399
    • Wada, T.1
  • 44
    • 26444579354 scopus 로고    scopus 로고
    • FHL2 inhibits the activated osteoclast in a TRAF6-dependent manner
    • Bai S., et al. FHL2 inhibits the activated osteoclast in a TRAF6-dependent manner. J. Clin. Invest. 2005, 115:2742-2751.
    • (2005) J. Clin. Invest. , vol.115 , pp. 2742-2751
    • Bai, S.1
  • 45
    • 15444357762 scopus 로고    scopus 로고
    • Requirement for NF-κB in osteoclast and B-cell development
    • Franzoso G., et al. Requirement for NF-κB in osteoclast and B-cell development. Genes Dev. 1997, 11:3482-3496.
    • (1997) Genes Dev. , vol.11 , pp. 3482-3496
    • Franzoso, G.1
  • 46
    • 0030715563 scopus 로고    scopus 로고
    • Osteopetrosis in mice lacking NF-κB1 and NF-κB2
    • Iotsova V., et al. Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nat. Med. 1997, 3:1285-1289.
    • (1997) Nat. Med. , vol.3 , pp. 1285-1289
    • Iotsova, V.1
  • 47
    • 28544434439 scopus 로고    scopus 로고
    • Fos/AP-1 proteins in bone and the immune system
    • Wagner E.F., Eferl R. Fos/AP-1 proteins in bone and the immune system. Immunol. Rev. 2005, 208:126-140.
    • (2005) Immunol. Rev. , vol.208 , pp. 126-140
    • Wagner, E.F.1    Eferl, R.2
  • 48
    • 33845539490 scopus 로고    scopus 로고
    • Regulation of osteoclast differentiation and function by the CaMK-CREB pathway
    • Sato K., et al. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat. Med. 2006, 12:1410-1416.
    • (2006) Nat. Med. , vol.12 , pp. 1410-1416
    • Sato, K.1
  • 49
    • 18744366041 scopus 로고    scopus 로고
    • Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling for terminal differentiation of osteoclasts
    • Takayanagi H., et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling for terminal differentiation of osteoclasts. Dev. Cell 2002, 3:889-901.
    • (2002) Dev. Cell , vol.3 , pp. 889-901
    • Takayanagi, H.1
  • 50
    • 0036234543 scopus 로고    scopus 로고
    • NFAT signaling: choreographing the social lives of cells
    • Crabtree G.R., Olson E.N. NFAT signaling: choreographing the social lives of cells. Cell 2002, 109(Suppl.):S67-S79.
    • (2002) Cell , vol.109 , Issue.SUPPL.
    • Crabtree, G.R.1    Olson, E.N.2
  • 51
    • 27744432009 scopus 로고    scopus 로고
    • Autoamplification of NFATc1 expression determines its essential role in bone homeostasis
    • Asagiri M., et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 2005, 202:1261-1269.
    • (2005) J. Exp. Med. , vol.202 , pp. 1261-1269
    • Asagiri, M.1
  • 52
    • 55849088412 scopus 로고    scopus 로고
    • NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism
    • Aliprantis A.O., et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J. Clin. Invest. 2008, 118:3775-3789.
    • (2008) J. Clin. Invest. , vol.118 , pp. 3775-3789
    • Aliprantis, A.O.1
  • 53
    • 69949148448 scopus 로고    scopus 로고
    • Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis
    • Zhao B., et al. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat. Med. 2009, 15:1066-1071.
    • (2009) Nat. Med. , vol.15 , pp. 1066-1071
    • Zhao, B.1
  • 54
    • 77951074209 scopus 로고    scopus 로고
    • The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis
    • Miyauchi Y., et al. The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. J. Exp. Med. 2010, 207:751-762.
    • (2010) J. Exp. Med. , vol.207 , pp. 751-762
    • Miyauchi, Y.1
  • 55
    • 34147132897 scopus 로고    scopus 로고
    • MafB negatively regulates RANKL-mediated osteoclast differentiation
    • Kim K., et al. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 2007, 109:3253-3259.
    • (2007) Blood , vol.109 , pp. 3253-3259
    • Kim, K.1
  • 56
    • 77649262903 scopus 로고    scopus 로고
    • Blimp1-mediated repression of negative regulators is required for osteoclast differentiation
    • Nishikawa K., et al. Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:3117-3122.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 3117-3122
    • Nishikawa, K.1
  • 57
    • 11144354330 scopus 로고    scopus 로고
    • Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis
    • Koga T., et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004, 428:758-763.
    • (2004) Nature , vol.428 , pp. 758-763
    • Koga, T.1
  • 58
    • 80052388933 scopus 로고    scopus 로고
    • OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice
    • Barrow A.D., et al. OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. J. Clin. Invest. 2011, 121:3505-3516.
    • (2011) J. Clin. Invest. , vol.121 , pp. 3505-3516
    • Barrow, A.D.1
  • 59
    • 48349105543 scopus 로고    scopus 로고
    • DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk
    • Zou W., et al. DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk. Mol. Cell 2008, 31:422-431.
    • (2008) Mol. Cell , vol.31 , pp. 422-431
    • Zou, W.1
  • 60
    • 39749180445 scopus 로고    scopus 로고
    • Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals
    • Shinohara M., et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 2008, 132:794-806.
    • (2008) Cell , vol.132 , pp. 794-806
    • Shinohara, M.1
  • 61
    • 0021285154 scopus 로고
    • Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint
    • Bromley M., Woolley D.E. Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum. 1984, 27:968-975.
    • (1984) Arthritis Rheum. , vol.27 , pp. 968-975
    • Bromley, M.1    Woolley, D.E.2
  • 62
    • 0031894140 scopus 로고    scopus 로고
    • Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis
    • Gravallese E.M., et al. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am. J. Pathol. 1998, 152:943-951.
    • (1998) Am. J. Pathol. , vol.152 , pp. 943-951
    • Gravallese, E.M.1
  • 63
    • 0031576524 scopus 로고    scopus 로고
    • A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis
    • Takayanagi H., et al. A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis. Biochem. Biophys. Res. Commun. 1997, 240:279-286.
    • (1997) Biochem. Biophys. Res. Commun. , vol.240 , pp. 279-286
    • Takayanagi, H.1
  • 64
    • 0034121039 scopus 로고    scopus 로고
    • Involvement of receptor activator of nuclear factor κB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis
    • Takayanagi H., et al. Involvement of receptor activator of nuclear factor κB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2000, 43:259-269.
    • (2000) Arthritis Rheum. , vol.43 , pp. 259-269
    • Takayanagi, H.1
  • 65
    • 0034122050 scopus 로고    scopus 로고
    • Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor
    • Gravallese E.M., et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000, 43:250-258.
    • (2000) Arthritis Rheum. , vol.43 , pp. 250-258
    • Gravallese, E.M.1
  • 66
    • 0033581952 scopus 로고    scopus 로고
    • Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand
    • Kong Y.Y., et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999, 402:304-309.
    • (1999) Nature , vol.402 , pp. 304-309
    • Kong, Y.Y.1
  • 67
    • 73349096273 scopus 로고    scopus 로고
    • Rheumatoid arthritis associated with osteopetrosis
    • Kadono Y., et al. Rheumatoid arthritis associated with osteopetrosis. Mod. Rheumatol. 2009, 19:687-690.
    • (2009) Mod. Rheumatol. , vol.19 , pp. 687-690
    • Kadono, Y.1
  • 68
    • 0035153246 scopus 로고    scopus 로고
    • TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis
    • Pettit A.R., et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol. 2001, 159:1689-1699.
    • (2001) Am. J. Pathol. , vol.159 , pp. 1689-1699
    • Pettit, A.R.1
  • 69
    • 51349092893 scopus 로고    scopus 로고
    • The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator
    • Hikosaka Y., et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 2008, 29:438-450.
    • (2008) Immunity , vol.29 , pp. 438-450
    • Hikosaka, Y.1
  • 70
    • 51349111243 scopus 로고    scopus 로고
    • The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance
    • Akiyama T., et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 2008, 29:423-437.
    • (2008) Immunity , vol.29 , pp. 423-437
    • Akiyama, T.1
  • 71
    • 0034730327 scopus 로고    scopus 로고
    • The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development
    • Fata J.E., et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 2000, 103:41-50.
    • (2000) Cell , vol.103 , pp. 41-50
    • Fata, J.E.1
  • 72
    • 33845543666 scopus 로고    scopus 로고
    • Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells
    • Loser K., et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat. Med. 2006, 12:1372-1379.
    • (2006) Nat. Med. , vol.12 , pp. 1372-1379
    • Loser, K.1
  • 73
    • 34250336454 scopus 로고    scopus 로고
    • - inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla
    • - inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J. Exp. Med. 2007, 204:1267-1272.
    • (2007) J. Exp. Med. , vol.204 , pp. 1267-1272
    • Rossi, S.W.1
  • 74
    • 1642526641 scopus 로고    scopus 로고
    • hi osteoclast precursors but is essential for mature osteoclast formation in TNFα-mediated inflammatory arthritis
    • hi osteoclast precursors but is essential for mature osteoclast formation in TNFα-mediated inflammatory arthritis. J. Bone Miner. Res. 2004, 19:207-213.
    • (2004) J. Bone Miner. Res. , vol.19 , pp. 207-213
    • Li, P.1
  • 75
    • 78149284013 scopus 로고    scopus 로고
    • Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer
    • Schramek D., et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 2010, 468:98-102.
    • (2010) Nature , vol.468 , pp. 98-102
    • Schramek, D.1
  • 76
    • 78149284767 scopus 로고    scopus 로고
    • RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis
    • Gonzalez-Suarez E., et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 2010, 468:103-107.
    • (2010) Nature , vol.468 , pp. 103-107
    • Gonzalez-Suarez, E.1
  • 77
    • 33744921357 scopus 로고    scopus 로고
    • Resorption of auditory ossicles and hearing loss in mice lacking osteoprotegerin
    • Kanzaki S., et al. Resorption of auditory ossicles and hearing loss in mice lacking osteoprotegerin. Bone 2006, 39:414-419.
    • (2006) Bone , vol.39 , pp. 414-419
    • Kanzaki, S.1
  • 78
    • 46349084493 scopus 로고    scopus 로고
    • Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations
    • Guerrini M.M., et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am. J. Hum. Genet. 2008, 83:64-76.
    • (2008) Am. J. Hum. Genet. , vol.83 , pp. 64-76
    • Guerrini, M.M.1
  • 79
    • 0033987358 scopus 로고    scopus 로고
    • Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis
    • Hughes A.E., et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat. Genet. 2000, 24:45-48.
    • (2000) Nat. Genet. , vol.24 , pp. 45-48
    • Hughes, A.E.1
  • 80
    • 0036778369 scopus 로고    scopus 로고
    • Familial expansile osteolysis in a large Spanish kindred resulting from an insertion mutation in the TNFRSF11A gene
    • Palenzuela L., et al. Familial expansile osteolysis in a large Spanish kindred resulting from an insertion mutation in the TNFRSF11A gene. J. Med. Genet. 2002, 39:E67.
    • (2002) J. Med. Genet. , vol.39
    • Palenzuela, L.1
  • 81
    • 0036133351 scopus 로고    scopus 로고
    • Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis
    • Whyte M.P., Hughes A.E. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J. Bone Miner. Res. 2002, 17:26-29.
    • (2002) J. Bone Miner. Res. , vol.17 , pp. 26-29
    • Whyte, M.P.1    Hughes, A.E.2
  • 82
    • 84856190866 scopus 로고    scopus 로고
    • A non-synonymous TNFRSF11A variation increases NFκB activity and the severity of Paget's disease
    • Gianfrancesco F., et al. A non-synonymous TNFRSF11A variation increases NFκB activity and the severity of Paget's disease. J. Bone Miner. Res. 2012, 27:443-452.
    • (2012) J. Bone Miner. Res. , vol.27 , pp. 443-452
    • Gianfrancesco, F.1
  • 83
    • 0037130183 scopus 로고    scopus 로고
    • Osteoprotegerin deficiency and juvenile Paget's disease
    • Whyte M.P., et al. Osteoprotegerin deficiency and juvenile Paget's disease. N. Engl. J. Med. 2002, 347:175-184.
    • (2002) N. Engl. J. Med. , vol.347 , pp. 175-184
    • Whyte, M.P.1
  • 84
    • 18544371504 scopus 로고    scopus 로고
    • A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype
    • Cundy T., et al. A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum. Mol. Genet. 2002, 11:2119-2127.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 2119-2127
    • Cundy, T.1
  • 85
    • 10744230044 scopus 로고    scopus 로고
    • Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype
    • Chong B., et al. Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype. J. Bone Miner. Res. 2003, 18:2095-2104.
    • (2003) J. Bone Miner. Res. , vol.18 , pp. 2095-2104
    • Chong, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.