메뉴 건너뛰기




Volumn 52, Issue 9, 2012, Pages 2366-2386

GA(M)E-QSAR: A novel, fully automatic genetic-algorithm-(meta)-ensembles approach for binary classification in ligand-based drug design

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE BOOSTING; COMPUTATIONAL CHEMISTRY; DRUG PRODUCTS; FEATURE EXTRACTION; GENETIC ALGORITHMS; LIGANDS;

EID: 84866647773     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci300146h     Document Type: Article
Times cited : (23)

References (76)
  • 1
    • 79955956020 scopus 로고    scopus 로고
    • Integrating structure-based and ligand-based approaches for computational drug design
    • Wilson, G. L.; Lill, M. A. Integrating structure-based and ligand-based approaches for computational drug design Future Med. Chem. 2011, 3 (6) 735-50
    • (2011) Future Med. Chem. , vol.3 , Issue.6 , pp. 735-750
    • Wilson, G.L.1    Lill, M.A.2
  • 3
    • 79954989328 scopus 로고    scopus 로고
    • Theoretical and computational approaches to ligand-based drug discovery
    • Favia, A. D. Theoretical and computational approaches to ligand-based drug discovery Front Biosci. 2011, 16, 1276-90
    • (2011) Front Biosci. , vol.16 , pp. 1276-1290
    • Favia, A.D.1
  • 4
    • 68149149512 scopus 로고    scopus 로고
    • Multitemplate alignment method for the development of a reliable 3D-QSAR model for the analysis of MMP3 inhibitors
    • Tuccinardi, T.; Ortore, G.; Santos, M. A. l.; Marques, S. r. M.; Nuti, E.; Rossello, A.; Martinelli, A. Multitemplate alignment method for the development of a reliable 3D-QSAR model for the analysis of MMP3 inhibitors J. Chem. Inf. Model. 2009, 49 (7) 1715-1724
    • (2009) J. Chem. Inf. Model. , vol.49 , Issue.7 , pp. 1715-1724
    • Tuccinardi, T.1    Ortore, G.2    Santos, M.A.L.3    Marques R. S, M.4    Nuti, E.5    Rossello, A.6    Martinelli, A.7
  • 5
    • 78149252206 scopus 로고    scopus 로고
    • Development, validation, and use of quantitative structure-activity relationship models of 5-hydroxytryptamine (2B) receptor ligands to identify novel receptor binders and putative valvulopathic compounds among common drugs
    • Hajjo, R.; Grulke, C. M.; Golbraikh, A.; Setola, V.; Huang, X. P.; Roth, B. L.; Tropsha, A. Development, validation, and use of quantitative structure-activity relationship models of 5-hydroxytryptamine (2B) receptor ligands to identify novel receptor binders and putative valvulopathic compounds among common drugs J. Med. Chem. 2010, 53 (21) 7573-86
    • (2010) J. Med. Chem. , vol.53 , Issue.21 , pp. 7573-7586
    • Hajjo, R.1    Grulke, C.M.2    Golbraikh, A.3    Setola, V.4    Huang, X.P.5    Roth, B.L.6    Tropsha, A.7
  • 6
    • 65249163549 scopus 로고    scopus 로고
    • Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation
    • Tang, H.; Wang, X. S.; Huang, X. P.; Roth, B. L.; Butler, K. V.; Kozikowski, A. P.; Jung, M.; Tropsha, A. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation J. Chem. Inf. Model. 2009, 49 (2) 461-76
    • (2009) J. Chem. Inf. Model. , vol.49 , Issue.2 , pp. 461-476
    • Tang, H.1    Wang, X.S.2    Huang, X.P.3    Roth, B.L.4    Butler, K.V.5    Kozikowski, A.P.6    Jung, M.7    Tropsha, A.8
  • 7
    • 11144354205 scopus 로고    scopus 로고
    • Application of predictive QSAR models to database mining: Identification and experimental validation of novel anticonvulsant compounds
    • Shen, M.; Béguin, C.; Golbraikh, A.; Stables, J. P.; Kohn, H.; Tropsha, A. Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds J. Med. Chem. 2004, 47 (9) 2356-2364
    • (2004) J. Med. Chem. , vol.47 , Issue.9 , pp. 2356-2364
    • Shen, M.1    Béguin, C.2    Golbraikh, A.3    Stables, J.P.4    Kohn, H.5    Tropsha, A.6
  • 9
    • 77956964002 scopus 로고    scopus 로고
    • Best practices for QSAR model development, validation, and exploitation
    • Tropsha, A. Best practices for QSAR model development, validation, and exploitation Mol. Inf. 2010, 29 (6-7) 476-488
    • (2010) Mol. Inf. , vol.29 , Issue.6-7 , pp. 476-488
    • Tropsha, A.1
  • 10
    • 78049349961 scopus 로고    scopus 로고
    • Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research
    • Fourches, D.; Muratov, E.; Tropsha, A. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research J. Chem. Inf. Model. 2010, 50 (7) 1189-204
    • (2010) J. Chem. Inf. Model. , vol.50 , Issue.7 , pp. 1189-1204
    • Fourches, D.1    Muratov, E.2    Tropsha, A.3
  • 11
    • 33746931581 scopus 로고    scopus 로고
    • On outliers and activity cliffs - Why QSAR often disappoints
    • Maggiora, G. M. On outliers and activity cliffs - why QSAR often disappoints J. Chem. Inf. Model. 2006, 46 (4) 1535
    • (2006) J. Chem. Inf. Model. , vol.46 , Issue.4 , pp. 1535
    • Maggiora, G.M.1
  • 13
    • 34848824629 scopus 로고    scopus 로고
    • Applications of Support Vector Machines in Chemistry
    • In; John Wiley & Sons, Inc.
    • Ivanciuc, O. Applications of Support Vector Machines in Chemistry. In Reviews in Computational Chemistry; John Wiley & Sons, Inc.: 2007; pp 291-400.
    • (2007) Reviews in Computational Chemistry , pp. 291-400
    • Ivanciuc, O.1
  • 14
    • 33750350511 scopus 로고    scopus 로고
    • Improved naive Bayesian modeling of numerical data for absorption, distribution, metabolism and excretion (ADME) property prediction
    • Klon, A. E.; Lowrie, J. F.; Diller, D. J. Improved naive Bayesian modeling of numerical data for absorption, distribution, metabolism and excretion (ADME) property prediction J. Chem. Inf. Model. 2006, 46 (5) 1945-56
    • (2006) J. Chem. Inf. Model. , vol.46 , Issue.5 , pp. 1945-1956
    • Klon, A.E.1    Lowrie, J.F.2    Diller, D.J.3
  • 15
    • 0000378338 scopus 로고    scopus 로고
    • Novel variable selection quantitative structure - Property relationship approach based on the k-nearest-neighbor principle
    • Zheng, W.; Tropsha, A. Novel variable selection quantitative structure - property relationship approach based on the k-nearest-neighbor principle J. Chem. Inf. Comput. Sci. 2000, 40 (1) 185-94
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , Issue.1 , pp. 185-194
    • Zheng, W.1    Tropsha, A.2
  • 16
    • 33750321978 scopus 로고    scopus 로고
    • A novel automated lazy learning QSAR (ALL-QSAR) approach: Method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models
    • Zhang, S.; Golbraikh, A.; Oloff, S.; Kohn, H.; Tropsha, A. A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models J. Chem. Inf. Model. 2006, 46 (5) 1984-95
    • (2006) J. Chem. Inf. Model. , vol.46 , Issue.5 , pp. 1984-1995
    • Zhang, S.1    Golbraikh, A.2    Oloff, S.3    Kohn, H.4    Tropsha, A.5
  • 17
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: A classification and regression tool for compound classification and QSAR modeling
    • Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. Random forest: a classification and regression tool for compound classification and QSAR modeling J. Chem. Inf. Comput. Sci. 2003, 43 (6) 1947-58
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , Issue.6 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Culberson, J.C.4    Sheridan, R.P.5    Feuston, B.P.6
  • 18
    • 23644446516 scopus 로고    scopus 로고
    • Aquatic Toxicity Prediction for Polar and Nonpolar Narcotic Pollutants with Support Vector Machines
    • Ivanciuc, O. Aquatic Toxicity Prediction for Polar and Nonpolar Narcotic Pollutants with Support Vector Machines Internet Electron. J. Mol. Des. 2003, 2, 195-208
    • (2003) Internet Electron. J. Mol. Des. , vol.2 , pp. 195-208
    • Ivanciuc, O.1
  • 19
    • 39149140400 scopus 로고    scopus 로고
    • High confidence predictions of drug-drug interactions: Predicting affinities for cytochrome P450 2C9 with multiple computational methods
    • Hudelson, M. G.; Ketkar, N. S.; Holder, L. B.; Carlson, T. J.; Peng, C. C.; Waldher, B. J.; Jones, J. P. High confidence predictions of drug-drug interactions: predicting affinities for cytochrome P450 2C9 with multiple computational methods J. Med. Chem. 2008, 51 (3) 648-54
    • (2008) J. Med. Chem. , vol.51 , Issue.3 , pp. 648-654
    • Hudelson, M.G.1    Ketkar, N.S.2    Holder, L.B.3    Carlson, T.J.4    Peng, C.C.5    Waldher, B.J.6    Jones, J.P.7
  • 20
    • 0037365123 scopus 로고    scopus 로고
    • Decision forest: Combining the predictions of multiple independent decision tree models
    • Tong, W.; Hong, H.; Fang, H.; Xie, Q.; Perkins, R. Decision forest: combining the predictions of multiple independent decision tree models J. Chem. Inf. Comput. Sci. 2003, 43 (2) 525-31
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , Issue.2 , pp. 525-531
    • Tong, W.1    Hong, H.2    Fang, H.3    Xie, Q.4    Perkins, R.5
  • 21
    • 84866691006 scopus 로고    scopus 로고
    • Science of the Science, Drug Discovery and Artificial Neural Networks
    • Epub ahead of print, published online June 25, 2012 not supplied.
    • Patel, J. Science of the Science, Drug Discovery and Artificial Neural Networks. Curr. Drug Discovery Technol. 2012, Epub ahead of print, published online June 25, 2012 not supplied.
    • (2012) Curr. Drug Discovery Technol.
    • Patel, J.1
  • 22
    • 59149091775 scopus 로고    scopus 로고
    • Weka machine learning for predicting the phospholipidosis inducing potential
    • Ivanciuc, O. Weka machine learning for predicting the phospholipidosis inducing potential Curr. Top. Med. Chem. 2008, 8 (18) 1691-709
    • (2008) Curr. Top. Med. Chem. , vol.8 , Issue.18 , pp. 1691-1709
    • Ivanciuc, O.1
  • 23
    • 60449096417 scopus 로고    scopus 로고
    • Artificial immune system prediction of the human intestinal absorption of drugs with AIRS (artificial immune recognition system)
    • Ivanciuc, O. Artificial immune system prediction of the human intestinal absorption of drugs with AIRS (artificial immune recognition system) Internet Electron. J. Mol. Des. 2006, 5, 515-529
    • (2006) Internet Electron. J. Mol. Des. , vol.5 , pp. 515-529
    • Ivanciuc, O.1
  • 24
    • 33846651190 scopus 로고    scopus 로고
    • QSAR analysis of tyrosine kinase inhibitor using modified ant colony optimization and multiple linear regression
    • Shi, W. M.; Shen, Q.; Kong, W.; Ye, B. X. QSAR analysis of tyrosine kinase inhibitor using modified ant colony optimization and multiple linear regression Eur. J. Med. Chem. 2007, 42 (1) 81-6
    • (2007) Eur. J. Med. Chem. , vol.42 , Issue.1 , pp. 81-86
    • Shi, W.M.1    Shen, Q.2    Kong, W.3    Ye, B.X.4
  • 25
    • 79953327578 scopus 로고    scopus 로고
    • Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM)
    • Fernandez, M.; Caballero, J.; Fernandez, L.; Sarai, A. Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM) Mol. Diversity 2011, 15 (1) 269-89
    • (2011) Mol. Diversity , vol.15 , Issue.1 , pp. 269-289
    • Fernandez, M.1    Caballero, J.2    Fernandez, L.3    Sarai, A.4
  • 26
    • 77956286706 scopus 로고    scopus 로고
    • QSAR modeling of peptide biological activity by coupling support vector machine with particle swarm optimization algorithm and genetic algorithm
    • Zhou, X.; Li, Z.; Dai, Z.; Zou, X. QSAR modeling of peptide biological activity by coupling support vector machine with particle swarm optimization algorithm and genetic algorithm J. Mol. Graphics Modell. 2010, 29 (2) 188-96
    • (2010) J. Mol. Graphics Modell. , vol.29 , Issue.2 , pp. 188-196
    • Zhou, X.1    Li, Z.2    Dai, Z.3    Zou, X.4
  • 27
    • 77957221382 scopus 로고    scopus 로고
    • Elaborate Ligand-Based Modeling Reveals New Nanomolar Heat Shock Protein 90α Inhibitors
    • Al-Sha'er, M. A.; Taha, M. O. Elaborate Ligand-Based Modeling Reveals New Nanomolar Heat Shock Protein 90α Inhibitors J. Chem. Inf. Model. 2010, 50 (9) 1706-1723
    • (2010) J. Chem. Inf. Model. , vol.50 , Issue.9 , pp. 1706-1723
    • Al-Sha'Er, M.A.1    Taha, M.O.2
  • 28
    • 81355132236 scopus 로고    scopus 로고
    • QSAR models for phosphoramidate prodrugs of 2'-methylcytidine as inhibitors of hepatitis C virus based on PSO boosting
    • Cheng, Z.; Zhang, Y.; Zhou, C. QSAR models for phosphoramidate prodrugs of 2'-methylcytidine as inhibitors of hepatitis C virus based on PSO boosting Chem. Biol. Drug Des. 2011, 78 (6) 948-59
    • (2011) Chem. Biol. Drug Des. , vol.78 , Issue.6 , pp. 948-959
    • Cheng, Z.1    Zhang, Y.2    Zhou, C.3
  • 29
    • 79951517776 scopus 로고    scopus 로고
    • Adaptive variable-weighted support vector machine as optimized by particle swarm optimization algorithm with application of QSAR studies
    • Wen, J. H.; Zhong, K. J.; Tang, L. J.; Jiang, J. H.; Wu, H. L.; Shen, G. L.; Yu, R. Q. Adaptive variable-weighted support vector machine as optimized by particle swarm optimization algorithm with application of QSAR studies Talanta 2011, 84 (1) 13-8
    • (2011) Talanta , vol.84 , Issue.1 , pp. 13-18
    • Wen, J.H.1    Zhong, K.J.2    Tang, L.J.3    Jiang, J.H.4    Wu, H.L.5    Shen, G.L.6    Yu, R.Q.7
  • 30
    • 84866657650 scopus 로고    scopus 로고
    • Development predictive QSAR models for artemisinin analogues by various feature selection methods: A comparative study
    • Abbasitabar, F.; Zare-Shahabadi, V., Development predictive QSAR models for artemisinin analogues by various feature selection methods: A comparative study. SAR QSAR Environ Res 2011.
    • (2011) SAR QSAR Environ Res
    • Abbasitabar, F.1    Zare-Shahabadi, V.2
  • 31
    • 66149118918 scopus 로고    scopus 로고
    • Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities
    • Goodarzi, M.; Freitas, M. P.; Jensen, R. Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities J. Chem. Inf. Model. 2009, 49 (4) 824-32
    • (2009) J. Chem. Inf. Model. , vol.49 , Issue.4 , pp. 824-832
    • Goodarzi, M.1    Freitas, M.P.2    Jensen, R.3
  • 32
    • 0037066339 scopus 로고    scopus 로고
    • QSAR for dihydrofolate reductase inhibitors with molecular graph structural descriptors
    • Ivanciuc, O.; Ivanciuc, T.; Cabrol-Bass, D. QSAR for dihydrofolate reductase inhibitors with molecular graph structural descriptors J. Mol. Struct.: THEOCHEM 2002, 582 (1-3) 39-51
    • (2002) J. Mol. Struct.: THEOCHEM , vol.582 , Issue.1-3 , pp. 39-51
    • Ivanciuc, O.1    Ivanciuc, T.2    Cabrol-Bass, D.3
  • 33
    • 66849094234 scopus 로고    scopus 로고
    • Drug Design with Artificial Intelligence Methods
    • In Meyers, R. A. Springer-Verlag: New York.
    • Ivanciuc, O. Drug Design with Artificial Intelligence Methods. In Encyclopedia of Complexity and Systems Science Meyers, R. A., Ed.; Springer-Verlag: New York, 2009.
    • (2009) Encyclopedia of Complexity and Systems Science
    • Ivanciuc, O.1
  • 34
    • 66849094234 scopus 로고    scopus 로고
    • Drug Design with Machine Learning
    • In; Meyers, R. A. Springer-Verlag: New York.
    • Ivanciuc, O. Drug Design with Machine Learning. In Encyclopedia of Complexity and System Science; Meyers, R. A., Ed.; Springer-Verlag: New York, 2009.
    • (2009) Encyclopedia of Complexity and System Science
    • Ivanciuc, O.1
  • 39
    • 79953823573 scopus 로고    scopus 로고
    • Why QSAR fails: An empirical evaluation using conventional computational approach
    • Huang, J.; Fan, X. Why QSAR fails: an empirical evaluation using conventional computational approach Mol. Pharmaceutics 2011, 8 (2) 600-608
    • (2011) Mol. Pharmaceutics , vol.8 , Issue.2 , pp. 600-608
    • Huang, J.1    Fan, X.2
  • 40
    • 69549090097 scopus 로고    scopus 로고
    • A Model-Based Ensembling Approach for Developing QSARs
    • Zhang, Q.; Hughes-Oliver, J. M.; Ng, R. T. A Model-Based Ensembling Approach for Developing QSARs J. Chem. Inf. Model. 2009, 49 (8) 1857-1865
    • (2009) J. Chem. Inf. Model. , vol.49 , Issue.8 , pp. 1857-1865
    • Zhang, Q.1    Hughes-Oliver, J.M.2    Ng, R.T.3
  • 42
    • 34250857528 scopus 로고    scopus 로고
    • Ensemble feature selection: Consistent descriptor subsets for multiple QSAR models
    • Dutta, D.; Guha, R.; Wild, D.; Chen, T. Ensemble feature selection: consistent descriptor subsets for multiple QSAR models J. Chem. Inf. Model. 2007, 47 (3) 989-97
    • (2007) J. Chem. Inf. Model. , vol.47 , Issue.3 , pp. 989-997
    • Dutta, D.1    Guha, R.2    Wild, D.3    Chen, T.4
  • 43
    • 45449097699 scopus 로고    scopus 로고
    • Proteochemometric modeling of the inhibition complexes of matrix metalloproteinases with N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives using topological autocorrelation interaction matrix and model ensemble averaging
    • Fernandez, M.; Fernandez, L.; Caballero, J.; Abreu, J. I.; Reyes, G. Proteochemometric modeling of the inhibition complexes of matrix metalloproteinases with N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives using topological autocorrelation interaction matrix and model ensemble averaging Chem. Biol. Drug Des. 2008, 72 (1) 65-78
    • (2008) Chem. Biol. Drug Des. , vol.72 , Issue.1 , pp. 65-78
    • Fernandez, M.1    Fernandez, L.2    Caballero, J.3    Abreu, J.I.4    Reyes, G.5
  • 44
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Yoav, F.; Robert, E. S. A decision-theoretic generalization of on-line learning and an application to boosting J. Comput. Syst. Sci. 1997, 55 (1) 119-139
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Yoav, F.1    Robert, E.S.2
  • 45
    • 77958073138 scopus 로고    scopus 로고
    • Feature selection combining genetic algorithm and Adaboost classifiers
    • In; IEEE
    • Chouaib, H.; Terrades, O. R.; Tabbone, S.; Cloppet, F.; Vincent, N., Feature selection combining genetic algorithm and Adaboost classifiers. In ICPR; IEEE: 2008; pp 1-4.
    • (2008) ICPR , pp. 1-4
    • Chouaib, H.1    Terrades, O.R.2    Tabbone, S.3    Cloppet, F.4    Vincent, N.5
  • 46
    • 19744372903 scopus 로고    scopus 로고
    • Construction of a classifier using AdaBoost for information filtering
    • Yanagimoto, H.; Omatu, S. Construction of a classifier using AdaBoost for information filtering Artificial Life Robotics 2005, 9 (2) 72-75
    • (2005) Artificial Life Robotics , vol.9 , Issue.2 , pp. 72-75
    • Yanagimoto, H.1    Omatu, S.2
  • 50
    • 77549085570 scopus 로고    scopus 로고
    • Dynamic Adaboost learning with feature selection based on parallel genetic algorithm for image annotation
    • Ran, L.; Jianjiang, L.; Yafei, Z.; Tianzhong, Z. Dynamic Adaboost learning with feature selection based on parallel genetic algorithm for image annotation Know.-Based Syst. 2010, 23 (3) 195-201
    • (2010) Know.-Based Syst. , vol.23 , Issue.3 , pp. 195-201
    • Ran, L.1    Jianjiang, L.2    Yafei, Z.3    Tianzhong, Z.4
  • 52
    • 0344686488 scopus 로고    scopus 로고
    • Spline-fitting with a genetic algorithm: A method for developing classification structure-activity relationships
    • Sutherland, J. J.; O'Brien, L. A.; Weaver, D. F. Spline-fitting with a genetic algorithm: a method for developing classification structure-activity relationships J. Chem. Inf. Comput. Sci. 2003, 43 (6) 1906-15
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , Issue.6 , pp. 1906-1915
    • Sutherland, J.J.1    O'Brien, L.A.2    Weaver, D.F.3
  • 53
    • 3142751988 scopus 로고    scopus 로고
    • Pruned Receptor Surface Models and Pharmacophores for Three-Dimensional Database Searching
    • Sutherland, J. J.; O'Brien, L. A.; Weaver, D. F. Pruned Receptor Surface Models and Pharmacophores for Three-Dimensional Database Searching J. Med. Chem. 2004, 47 (15) 3777-3787
    • (2004) J. Med. Chem. , vol.47 , Issue.15 , pp. 3777-3787
    • Sutherland, J.J.1    O'Brien, L.A.2    Weaver, D.F.3
  • 54
    • 33845740308 scopus 로고    scopus 로고
    • Emerging Chemical Patterns: A New Methodology for Molecular Classification and Compound Selection
    • Auer, J.; Bajorath, J. Emerging Chemical Patterns: A New Methodology for Molecular Classification and Compound Selection J. Chem. Inf. Model. 2006, 46 (6) 2502-2514
    • (2006) J. Chem. Inf. Model. , vol.46 , Issue.6 , pp. 2502-2514
    • Auer, J.1    Bajorath, J.2
  • 56
    • 77954075802 scopus 로고    scopus 로고
    • Gaussian processes for classification: QSAR modeling of ADMET and target activity
    • Obrezanova, O.; Segall, M. D. Gaussian processes for classification: QSAR modeling of ADMET and target activity J. Chem. Inf. Model. 2010, 50 (6) 1053-61
    • (2010) J. Chem. Inf. Model. , vol.50 , Issue.6 , pp. 1053-1061
    • Obrezanova, O.1    Segall, M.D.2
  • 57
    • 79952593481 scopus 로고    scopus 로고
    • StructRank: A new approach for ligand-based virtual screening
    • Rathke, F.; Hansen, K.; Brefeld, U.; Muller, K. R. StructRank: a new approach for ligand-based virtual screening J. Chem. Inf. Model. 2011, 51 (1) 83-92
    • (2011) J. Chem. Inf. Model. , vol.51 , Issue.1 , pp. 83-92
    • Rathke, F.1    Hansen, K.2    Brefeld, U.3    Muller, K.R.4
  • 58
    • 56449109358 scopus 로고    scopus 로고
    • Using Molecular Docking, 3D-QSAR, and Cluster Analysis for Screening Structurally Diverse Data Sets of Pharmacological Interest
    • Santos-Filho, O. A.; Cherkasov, A. Using Molecular Docking, 3D-QSAR, and Cluster Analysis for Screening Structurally Diverse Data Sets of Pharmacological Interest J. Chem. Inf. Model. 2008, 48 (10) 2054-2065
    • (2008) J. Chem. Inf. Model. , vol.48 , Issue.10 , pp. 2054-2065
    • Santos-Filho, O.A.1    Cherkasov, A.2
  • 59
    • 33750294461 scopus 로고    scopus 로고
    • The Pharmacophore Kernel for Virtual Screening with Support Vector Machines
    • Mahé, P.; Ralaivola, L.; Stoven, V.; Vert, J.-P. The Pharmacophore Kernel for Virtual Screening with Support Vector Machines J. Chem. Inf. Model. 2006, 46 (5) 2003-2014
    • (2006) J. Chem. Inf. Model. , vol.46 , Issue.5 , pp. 2003-2014
    • Mahé, P.1    Ralaivola, L.2    Stoven, V.3    Vert, J.-P.4
  • 60
    • 75149175715 scopus 로고    scopus 로고
    • Cheminformatics Analysis of Assertions Mined from Literature That Describe Drug-Induced Liver Injury in Different Species
    • Fourches, D.; Barnes, J. C.; Day, N. C.; Bradley, P.; Reed, J. Z.; Tropsha, A. Cheminformatics Analysis of Assertions Mined from Literature That Describe Drug-Induced Liver Injury in Different Species Chem. Res. Toxicol. 2009, 23 (1) 171-183
    • (2009) Chem. Res. Toxicol. , vol.23 , Issue.1 , pp. 171-183
    • Fourches, D.1    Barnes, J.C.2    Day, N.C.3    Bradley, P.4    Reed, J.Z.5    Tropsha, A.6
  • 61
    • 84866691007 scopus 로고    scopus 로고
    • Talete DRAGON (Software for Molecular Descriptor Calculation), 6.0; 2010
    • Talete DRAGON (Software for Molecular Descriptor Calculation), 6.0; 2010.
  • 62
    • 84866700756 scopus 로고    scopus 로고
    • MATLAB, R2009a; The MathWorks Inc.: 2009
    • MATLAB, R2009a; The MathWorks Inc.: 2009.
  • 63
    • 0000501656 scopus 로고
    • In, Second International Symposium on Information Theory, 1973; Petrov, B. N. Csaki, F. Akadémiai Kiado
    • Akaike, H. In Information theory and an extension of the maximum likelihood principle, Second International Symposium on Information Theory, 1973; Petrov, B. N.; Csaki, F., Eds.; Akadémiai Kiado: 1973; pp 267-281.
    • (1973) Information Theory and An Extension of the Maximum Likelihood Principle , pp. 267-281
    • Akaike, H.1
  • 64
    • 0346500732 scopus 로고    scopus 로고
    • A distance measure between models: A tool for similarity/diversity analysis of model populations
    • Todeschini, R.; Consonni, V.; Pavan, M. A distance measure between models: a tool for similarity/diversity analysis of model populations Chemom. Intell. Lab. Syst. 2004, 70 (1) 55-61
    • (2004) Chemom. Intell. Lab. Syst. , vol.70 , Issue.1 , pp. 55-61
    • Todeschini, R.1    Consonni, V.2    Pavan, M.3
  • 65
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Morgan Kaufmann Publishers Inc. Montreal, Quebec, Canada
    • Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th international joint conference on Artificial intelligence-Vol. 2; Morgan Kaufmann Publishers Inc.: Montreal, Quebec, Canada, 1995; pp 1137-1143.
    • (1995) Proceedings of the 14th International Joint Conference on Artificial Intelligence , vol.2 , pp. 1137-1143
    • Kohavi, R.1
  • 69
    • 0001694108 scopus 로고
    • Preference structures II: Distances between asymmetric relations
    • Bogart, K. P. Preference structures II: distances between asymmetric relations SIAM J. Appl. Math. 1975, 29 (2) 254-262
    • (1975) SIAM J. Appl. Math. , vol.29 , Issue.2 , pp. 254-262
    • Bogart, K.P.1
  • 70
    • 0030825529 scopus 로고    scopus 로고
    • A general framework for distance-based consensus in ordinal ranking models
    • Cook, W. D.; Kress, M.; Seiford, L. M. A general framework for distance-based consensus in ordinal ranking models Eur. J. Oper. Res. 1997, 96 (2) 392-397
    • (1997) Eur. J. Oper. Res. , vol.96 , Issue.2 , pp. 392-397
    • Cook, W.D.1    Kress, M.2    Seiford, L.M.3
  • 74
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon, F. Individual comparisons by ranking methods Biom. Bull. 1945, 1 (6) 80-83
    • (1945) Biom. Bull. , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 75
    • 27744590591 scopus 로고    scopus 로고
    • QSAR applicabilty domain estimation by projection of the training set descriptor space: A review
    • Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T. QSAR applicabilty domain estimation by projection of the training set descriptor space: a review Altern. Lab. Anim. 2005, 33 (5) 445-59
    • (2005) Altern. Lab. Anim. , vol.33 , Issue.5 , pp. 445-459
    • Jaworska, J.1    Nikolova-Jeliazkova, N.2    Aldenberg, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.