-
1
-
-
79955956020
-
Integrating structure-based and ligand-based approaches for computational drug design
-
Wilson, G. L.; Lill, M. A. Integrating structure-based and ligand-based approaches for computational drug design Future Med. Chem. 2011, 3 (6) 735-50
-
(2011)
Future Med. Chem.
, vol.3
, Issue.6
, pp. 735-750
-
-
Wilson, G.L.1
Lill, M.A.2
-
2
-
-
79957957725
-
Strategies in the rational drug design
-
Mavromoustakos, T.; Durdagi, S.; Koukoulitsa, C.; Simcic, M.; Papadopoulos, M. G.; Hodoscek, M.; Grdadolnik, S. G. Strategies in the rational drug design Curr. Med. Chem. 2011, 18 (17) 2517-30
-
(2011)
Curr. Med. Chem.
, vol.18
, Issue.17
, pp. 2517-2530
-
-
Mavromoustakos, T.1
Durdagi, S.2
Koukoulitsa, C.3
Simcic, M.4
Papadopoulos, M.G.5
Hodoscek, M.6
Grdadolnik, S.G.7
-
3
-
-
79954989328
-
Theoretical and computational approaches to ligand-based drug discovery
-
Favia, A. D. Theoretical and computational approaches to ligand-based drug discovery Front Biosci. 2011, 16, 1276-90
-
(2011)
Front Biosci.
, vol.16
, pp. 1276-1290
-
-
Favia, A.D.1
-
4
-
-
68149149512
-
Multitemplate alignment method for the development of a reliable 3D-QSAR model for the analysis of MMP3 inhibitors
-
Tuccinardi, T.; Ortore, G.; Santos, M. A. l.; Marques, S. r. M.; Nuti, E.; Rossello, A.; Martinelli, A. Multitemplate alignment method for the development of a reliable 3D-QSAR model for the analysis of MMP3 inhibitors J. Chem. Inf. Model. 2009, 49 (7) 1715-1724
-
(2009)
J. Chem. Inf. Model.
, vol.49
, Issue.7
, pp. 1715-1724
-
-
Tuccinardi, T.1
Ortore, G.2
Santos, M.A.L.3
Marques R. S, M.4
Nuti, E.5
Rossello, A.6
Martinelli, A.7
-
5
-
-
78149252206
-
Development, validation, and use of quantitative structure-activity relationship models of 5-hydroxytryptamine (2B) receptor ligands to identify novel receptor binders and putative valvulopathic compounds among common drugs
-
Hajjo, R.; Grulke, C. M.; Golbraikh, A.; Setola, V.; Huang, X. P.; Roth, B. L.; Tropsha, A. Development, validation, and use of quantitative structure-activity relationship models of 5-hydroxytryptamine (2B) receptor ligands to identify novel receptor binders and putative valvulopathic compounds among common drugs J. Med. Chem. 2010, 53 (21) 7573-86
-
(2010)
J. Med. Chem.
, vol.53
, Issue.21
, pp. 7573-7586
-
-
Hajjo, R.1
Grulke, C.M.2
Golbraikh, A.3
Setola, V.4
Huang, X.P.5
Roth, B.L.6
Tropsha, A.7
-
6
-
-
65249163549
-
Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation
-
Tang, H.; Wang, X. S.; Huang, X. P.; Roth, B. L.; Butler, K. V.; Kozikowski, A. P.; Jung, M.; Tropsha, A. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation J. Chem. Inf. Model. 2009, 49 (2) 461-76
-
(2009)
J. Chem. Inf. Model.
, vol.49
, Issue.2
, pp. 461-476
-
-
Tang, H.1
Wang, X.S.2
Huang, X.P.3
Roth, B.L.4
Butler, K.V.5
Kozikowski, A.P.6
Jung, M.7
Tropsha, A.8
-
7
-
-
11144354205
-
Application of predictive QSAR models to database mining: Identification and experimental validation of novel anticonvulsant compounds
-
Shen, M.; Béguin, C.; Golbraikh, A.; Stables, J. P.; Kohn, H.; Tropsha, A. Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds J. Med. Chem. 2004, 47 (9) 2356-2364
-
(2004)
J. Med. Chem.
, vol.47
, Issue.9
, pp. 2356-2364
-
-
Shen, M.1
Béguin, C.2
Golbraikh, A.3
Stables, J.P.4
Kohn, H.5
Tropsha, A.6
-
9
-
-
77956964002
-
Best practices for QSAR model development, validation, and exploitation
-
Tropsha, A. Best practices for QSAR model development, validation, and exploitation Mol. Inf. 2010, 29 (6-7) 476-488
-
(2010)
Mol. Inf.
, vol.29
, Issue.6-7
, pp. 476-488
-
-
Tropsha, A.1
-
10
-
-
78049349961
-
Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research
-
Fourches, D.; Muratov, E.; Tropsha, A. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research J. Chem. Inf. Model. 2010, 50 (7) 1189-204
-
(2010)
J. Chem. Inf. Model.
, vol.50
, Issue.7
, pp. 1189-1204
-
-
Fourches, D.1
Muratov, E.2
Tropsha, A.3
-
11
-
-
33746931581
-
On outliers and activity cliffs - Why QSAR often disappoints
-
Maggiora, G. M. On outliers and activity cliffs - why QSAR often disappoints J. Chem. Inf. Model. 2006, 46 (4) 1535
-
(2006)
J. Chem. Inf. Model.
, vol.46
, Issue.4
, pp. 1535
-
-
Maggiora, G.M.1
-
13
-
-
34848824629
-
Applications of Support Vector Machines in Chemistry
-
In; John Wiley & Sons, Inc.
-
Ivanciuc, O. Applications of Support Vector Machines in Chemistry. In Reviews in Computational Chemistry; John Wiley & Sons, Inc.: 2007; pp 291-400.
-
(2007)
Reviews in Computational Chemistry
, pp. 291-400
-
-
Ivanciuc, O.1
-
14
-
-
33750350511
-
Improved naive Bayesian modeling of numerical data for absorption, distribution, metabolism and excretion (ADME) property prediction
-
Klon, A. E.; Lowrie, J. F.; Diller, D. J. Improved naive Bayesian modeling of numerical data for absorption, distribution, metabolism and excretion (ADME) property prediction J. Chem. Inf. Model. 2006, 46 (5) 1945-56
-
(2006)
J. Chem. Inf. Model.
, vol.46
, Issue.5
, pp. 1945-1956
-
-
Klon, A.E.1
Lowrie, J.F.2
Diller, D.J.3
-
15
-
-
0000378338
-
Novel variable selection quantitative structure - Property relationship approach based on the k-nearest-neighbor principle
-
Zheng, W.; Tropsha, A. Novel variable selection quantitative structure - property relationship approach based on the k-nearest-neighbor principle J. Chem. Inf. Comput. Sci. 2000, 40 (1) 185-94
-
(2000)
J. Chem. Inf. Comput. Sci.
, vol.40
, Issue.1
, pp. 185-194
-
-
Zheng, W.1
Tropsha, A.2
-
16
-
-
33750321978
-
A novel automated lazy learning QSAR (ALL-QSAR) approach: Method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models
-
Zhang, S.; Golbraikh, A.; Oloff, S.; Kohn, H.; Tropsha, A. A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models J. Chem. Inf. Model. 2006, 46 (5) 1984-95
-
(2006)
J. Chem. Inf. Model.
, vol.46
, Issue.5
, pp. 1984-1995
-
-
Zhang, S.1
Golbraikh, A.2
Oloff, S.3
Kohn, H.4
Tropsha, A.5
-
17
-
-
0345548657
-
Random forest: A classification and regression tool for compound classification and QSAR modeling
-
Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. Random forest: a classification and regression tool for compound classification and QSAR modeling J. Chem. Inf. Comput. Sci. 2003, 43 (6) 1947-58
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, Issue.6
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.C.4
Sheridan, R.P.5
Feuston, B.P.6
-
18
-
-
23644446516
-
Aquatic Toxicity Prediction for Polar and Nonpolar Narcotic Pollutants with Support Vector Machines
-
Ivanciuc, O. Aquatic Toxicity Prediction for Polar and Nonpolar Narcotic Pollutants with Support Vector Machines Internet Electron. J. Mol. Des. 2003, 2, 195-208
-
(2003)
Internet Electron. J. Mol. Des.
, vol.2
, pp. 195-208
-
-
Ivanciuc, O.1
-
19
-
-
39149140400
-
High confidence predictions of drug-drug interactions: Predicting affinities for cytochrome P450 2C9 with multiple computational methods
-
Hudelson, M. G.; Ketkar, N. S.; Holder, L. B.; Carlson, T. J.; Peng, C. C.; Waldher, B. J.; Jones, J. P. High confidence predictions of drug-drug interactions: predicting affinities for cytochrome P450 2C9 with multiple computational methods J. Med. Chem. 2008, 51 (3) 648-54
-
(2008)
J. Med. Chem.
, vol.51
, Issue.3
, pp. 648-654
-
-
Hudelson, M.G.1
Ketkar, N.S.2
Holder, L.B.3
Carlson, T.J.4
Peng, C.C.5
Waldher, B.J.6
Jones, J.P.7
-
20
-
-
0037365123
-
Decision forest: Combining the predictions of multiple independent decision tree models
-
Tong, W.; Hong, H.; Fang, H.; Xie, Q.; Perkins, R. Decision forest: combining the predictions of multiple independent decision tree models J. Chem. Inf. Comput. Sci. 2003, 43 (2) 525-31
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, Issue.2
, pp. 525-531
-
-
Tong, W.1
Hong, H.2
Fang, H.3
Xie, Q.4
Perkins, R.5
-
21
-
-
84866691006
-
Science of the Science, Drug Discovery and Artificial Neural Networks
-
Epub ahead of print, published online June 25, 2012 not supplied.
-
Patel, J. Science of the Science, Drug Discovery and Artificial Neural Networks. Curr. Drug Discovery Technol. 2012, Epub ahead of print, published online June 25, 2012 not supplied.
-
(2012)
Curr. Drug Discovery Technol.
-
-
Patel, J.1
-
22
-
-
59149091775
-
Weka machine learning for predicting the phospholipidosis inducing potential
-
Ivanciuc, O. Weka machine learning for predicting the phospholipidosis inducing potential Curr. Top. Med. Chem. 2008, 8 (18) 1691-709
-
(2008)
Curr. Top. Med. Chem.
, vol.8
, Issue.18
, pp. 1691-1709
-
-
Ivanciuc, O.1
-
23
-
-
60449096417
-
Artificial immune system prediction of the human intestinal absorption of drugs with AIRS (artificial immune recognition system)
-
Ivanciuc, O. Artificial immune system prediction of the human intestinal absorption of drugs with AIRS (artificial immune recognition system) Internet Electron. J. Mol. Des. 2006, 5, 515-529
-
(2006)
Internet Electron. J. Mol. Des.
, vol.5
, pp. 515-529
-
-
Ivanciuc, O.1
-
24
-
-
33846651190
-
QSAR analysis of tyrosine kinase inhibitor using modified ant colony optimization and multiple linear regression
-
Shi, W. M.; Shen, Q.; Kong, W.; Ye, B. X. QSAR analysis of tyrosine kinase inhibitor using modified ant colony optimization and multiple linear regression Eur. J. Med. Chem. 2007, 42 (1) 81-6
-
(2007)
Eur. J. Med. Chem.
, vol.42
, Issue.1
, pp. 81-86
-
-
Shi, W.M.1
Shen, Q.2
Kong, W.3
Ye, B.X.4
-
25
-
-
79953327578
-
Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM)
-
Fernandez, M.; Caballero, J.; Fernandez, L.; Sarai, A. Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM) Mol. Diversity 2011, 15 (1) 269-89
-
(2011)
Mol. Diversity
, vol.15
, Issue.1
, pp. 269-289
-
-
Fernandez, M.1
Caballero, J.2
Fernandez, L.3
Sarai, A.4
-
26
-
-
77956286706
-
QSAR modeling of peptide biological activity by coupling support vector machine with particle swarm optimization algorithm and genetic algorithm
-
Zhou, X.; Li, Z.; Dai, Z.; Zou, X. QSAR modeling of peptide biological activity by coupling support vector machine with particle swarm optimization algorithm and genetic algorithm J. Mol. Graphics Modell. 2010, 29 (2) 188-96
-
(2010)
J. Mol. Graphics Modell.
, vol.29
, Issue.2
, pp. 188-196
-
-
Zhou, X.1
Li, Z.2
Dai, Z.3
Zou, X.4
-
27
-
-
77957221382
-
Elaborate Ligand-Based Modeling Reveals New Nanomolar Heat Shock Protein 90α Inhibitors
-
Al-Sha'er, M. A.; Taha, M. O. Elaborate Ligand-Based Modeling Reveals New Nanomolar Heat Shock Protein 90α Inhibitors J. Chem. Inf. Model. 2010, 50 (9) 1706-1723
-
(2010)
J. Chem. Inf. Model.
, vol.50
, Issue.9
, pp. 1706-1723
-
-
Al-Sha'Er, M.A.1
Taha, M.O.2
-
28
-
-
81355132236
-
QSAR models for phosphoramidate prodrugs of 2'-methylcytidine as inhibitors of hepatitis C virus based on PSO boosting
-
Cheng, Z.; Zhang, Y.; Zhou, C. QSAR models for phosphoramidate prodrugs of 2'-methylcytidine as inhibitors of hepatitis C virus based on PSO boosting Chem. Biol. Drug Des. 2011, 78 (6) 948-59
-
(2011)
Chem. Biol. Drug Des.
, vol.78
, Issue.6
, pp. 948-959
-
-
Cheng, Z.1
Zhang, Y.2
Zhou, C.3
-
29
-
-
79951517776
-
Adaptive variable-weighted support vector machine as optimized by particle swarm optimization algorithm with application of QSAR studies
-
Wen, J. H.; Zhong, K. J.; Tang, L. J.; Jiang, J. H.; Wu, H. L.; Shen, G. L.; Yu, R. Q. Adaptive variable-weighted support vector machine as optimized by particle swarm optimization algorithm with application of QSAR studies Talanta 2011, 84 (1) 13-8
-
(2011)
Talanta
, vol.84
, Issue.1
, pp. 13-18
-
-
Wen, J.H.1
Zhong, K.J.2
Tang, L.J.3
Jiang, J.H.4
Wu, H.L.5
Shen, G.L.6
Yu, R.Q.7
-
30
-
-
84866657650
-
Development predictive QSAR models for artemisinin analogues by various feature selection methods: A comparative study
-
Abbasitabar, F.; Zare-Shahabadi, V., Development predictive QSAR models for artemisinin analogues by various feature selection methods: A comparative study. SAR QSAR Environ Res 2011.
-
(2011)
SAR QSAR Environ Res
-
-
Abbasitabar, F.1
Zare-Shahabadi, V.2
-
31
-
-
66149118918
-
Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities
-
Goodarzi, M.; Freitas, M. P.; Jensen, R. Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities J. Chem. Inf. Model. 2009, 49 (4) 824-32
-
(2009)
J. Chem. Inf. Model.
, vol.49
, Issue.4
, pp. 824-832
-
-
Goodarzi, M.1
Freitas, M.P.2
Jensen, R.3
-
32
-
-
0037066339
-
QSAR for dihydrofolate reductase inhibitors with molecular graph structural descriptors
-
Ivanciuc, O.; Ivanciuc, T.; Cabrol-Bass, D. QSAR for dihydrofolate reductase inhibitors with molecular graph structural descriptors J. Mol. Struct.: THEOCHEM 2002, 582 (1-3) 39-51
-
(2002)
J. Mol. Struct.: THEOCHEM
, vol.582
, Issue.1-3
, pp. 39-51
-
-
Ivanciuc, O.1
Ivanciuc, T.2
Cabrol-Bass, D.3
-
33
-
-
66849094234
-
Drug Design with Artificial Intelligence Methods
-
In Meyers, R. A. Springer-Verlag: New York.
-
Ivanciuc, O. Drug Design with Artificial Intelligence Methods. In Encyclopedia of Complexity and Systems Science Meyers, R. A., Ed.; Springer-Verlag: New York, 2009.
-
(2009)
Encyclopedia of Complexity and Systems Science
-
-
Ivanciuc, O.1
-
34
-
-
66849094234
-
Drug Design with Machine Learning
-
In; Meyers, R. A. Springer-Verlag: New York.
-
Ivanciuc, O. Drug Design with Machine Learning. In Encyclopedia of Complexity and System Science; Meyers, R. A., Ed.; Springer-Verlag: New York, 2009.
-
(2009)
Encyclopedia of Complexity and System Science
-
-
Ivanciuc, O.1
-
36
-
-
59149094217
-
Variable selection methods in QSAR: An overview
-
Gonzalez, M. P.; Teran, C.; Saiz-Urra, L.; Teijeira, M. Variable selection methods in QSAR: an overview Curr. Top. Med. Chem. 2008, 8 (18) 1606-27
-
(2008)
Curr. Top. Med. Chem.
, vol.8
, Issue.18
, pp. 1606-1627
-
-
Gonzalez, M.P.1
Teran, C.2
Saiz-Urra, L.3
Teijeira, M.4
-
39
-
-
79953823573
-
Why QSAR fails: An empirical evaluation using conventional computational approach
-
Huang, J.; Fan, X. Why QSAR fails: an empirical evaluation using conventional computational approach Mol. Pharmaceutics 2011, 8 (2) 600-608
-
(2011)
Mol. Pharmaceutics
, vol.8
, Issue.2
, pp. 600-608
-
-
Huang, J.1
Fan, X.2
-
40
-
-
69549090097
-
A Model-Based Ensembling Approach for Developing QSARs
-
Zhang, Q.; Hughes-Oliver, J. M.; Ng, R. T. A Model-Based Ensembling Approach for Developing QSARs J. Chem. Inf. Model. 2009, 49 (8) 1857-1865
-
(2009)
J. Chem. Inf. Model.
, vol.49
, Issue.8
, pp. 1857-1865
-
-
Zhang, Q.1
Hughes-Oliver, J.M.2
Ng, R.T.3
-
41
-
-
44449173096
-
Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis
-
Zhu, H.; Tropsha, A.; Fourches, D.; Varnek, A.; Papa, E.; Gramatica, P.; Oberg, T.; Dao, P.; Cherkasov, A.; Tetko, I. V. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis J. Chem. Inf. Model. 2008, 48 (4) 766-84
-
(2008)
J. Chem. Inf. Model.
, vol.48
, Issue.4
, pp. 766-784
-
-
Zhu, H.1
Tropsha, A.2
Fourches, D.3
Varnek, A.4
Papa, E.5
Gramatica, P.6
Oberg, T.7
Dao, P.8
Cherkasov, A.9
Tetko, I.V.10
-
42
-
-
34250857528
-
Ensemble feature selection: Consistent descriptor subsets for multiple QSAR models
-
Dutta, D.; Guha, R.; Wild, D.; Chen, T. Ensemble feature selection: consistent descriptor subsets for multiple QSAR models J. Chem. Inf. Model. 2007, 47 (3) 989-97
-
(2007)
J. Chem. Inf. Model.
, vol.47
, Issue.3
, pp. 989-997
-
-
Dutta, D.1
Guha, R.2
Wild, D.3
Chen, T.4
-
43
-
-
45449097699
-
Proteochemometric modeling of the inhibition complexes of matrix metalloproteinases with N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives using topological autocorrelation interaction matrix and model ensemble averaging
-
Fernandez, M.; Fernandez, L.; Caballero, J.; Abreu, J. I.; Reyes, G. Proteochemometric modeling of the inhibition complexes of matrix metalloproteinases with N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives using topological autocorrelation interaction matrix and model ensemble averaging Chem. Biol. Drug Des. 2008, 72 (1) 65-78
-
(2008)
Chem. Biol. Drug Des.
, vol.72
, Issue.1
, pp. 65-78
-
-
Fernandez, M.1
Fernandez, L.2
Caballero, J.3
Abreu, J.I.4
Reyes, G.5
-
44
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Yoav, F.; Robert, E. S. A decision-theoretic generalization of on-line learning and an application to boosting J. Comput. Syst. Sci. 1997, 55 (1) 119-139
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Yoav, F.1
Robert, E.S.2
-
45
-
-
77958073138
-
Feature selection combining genetic algorithm and Adaboost classifiers
-
In; IEEE
-
Chouaib, H.; Terrades, O. R.; Tabbone, S.; Cloppet, F.; Vincent, N., Feature selection combining genetic algorithm and Adaboost classifiers. In ICPR; IEEE: 2008; pp 1-4.
-
(2008)
ICPR
, pp. 1-4
-
-
Chouaib, H.1
Terrades, O.R.2
Tabbone, S.3
Cloppet, F.4
Vincent, N.5
-
46
-
-
19744372903
-
Construction of a classifier using AdaBoost for information filtering
-
Yanagimoto, H.; Omatu, S. Construction of a classifier using AdaBoost for information filtering Artificial Life Robotics 2005, 9 (2) 72-75
-
(2005)
Artificial Life Robotics
, vol.9
, Issue.2
, pp. 72-75
-
-
Yanagimoto, H.1
Omatu, S.2
-
48
-
-
77958073138
-
Feature selection combining genetic algorithm and Adaboost classifiers
-
Chouaib, H.; Terrades, O. R.; Tabbone, S.; Cloppet, F.; Vincent, N. In Feature selection combining genetic algorithm and Adaboost classifiers, Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, 2008; 2008; pp 1-4.
-
(2008)
Pattern Recognition, 2008. ICPR 2008. 19th International Conference On, 2008
, pp. 1-4
-
-
Chouaib, H.1
Terrades, O.R.2
Tabbone, S.3
Cloppet, F.4
Vincent, N.5
-
50
-
-
77549085570
-
Dynamic Adaboost learning with feature selection based on parallel genetic algorithm for image annotation
-
Ran, L.; Jianjiang, L.; Yafei, Z.; Tianzhong, Z. Dynamic Adaboost learning with feature selection based on parallel genetic algorithm for image annotation Know.-Based Syst. 2010, 23 (3) 195-201
-
(2010)
Know.-Based Syst.
, vol.23
, Issue.3
, pp. 195-201
-
-
Ran, L.1
Jianjiang, L.2
Yafei, Z.3
Tianzhong, Z.4
-
51
-
-
48649091885
-
A pattern classification approach for boosting with genetic algorithms
-
Yalabik, I.; Fatos, T. Y. V. In A pattern classification approach for boosting with genetic algorithms, Computer and information sciences, 2007. iscis 2007. 22nd international symposium on, 7-9 Nov. 2007, 2007; 2007; pp 1-6.
-
(2007)
Computer and Information Sciences, 2007. Iscis 2007. 22nd International Symposium On, 7-9 Nov. 2007, 2007
, pp. 1-6
-
-
Yalabik, I.1
Fatos, T.Y.V.2
-
52
-
-
0344686488
-
Spline-fitting with a genetic algorithm: A method for developing classification structure-activity relationships
-
Sutherland, J. J.; O'Brien, L. A.; Weaver, D. F. Spline-fitting with a genetic algorithm: a method for developing classification structure-activity relationships J. Chem. Inf. Comput. Sci. 2003, 43 (6) 1906-15
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, Issue.6
, pp. 1906-1915
-
-
Sutherland, J.J.1
O'Brien, L.A.2
Weaver, D.F.3
-
53
-
-
3142751988
-
Pruned Receptor Surface Models and Pharmacophores for Three-Dimensional Database Searching
-
Sutherland, J. J.; O'Brien, L. A.; Weaver, D. F. Pruned Receptor Surface Models and Pharmacophores for Three-Dimensional Database Searching J. Med. Chem. 2004, 47 (15) 3777-3787
-
(2004)
J. Med. Chem.
, vol.47
, Issue.15
, pp. 3777-3787
-
-
Sutherland, J.J.1
O'Brien, L.A.2
Weaver, D.F.3
-
54
-
-
33845740308
-
Emerging Chemical Patterns: A New Methodology for Molecular Classification and Compound Selection
-
Auer, J.; Bajorath, J. Emerging Chemical Patterns: A New Methodology for Molecular Classification and Compound Selection J. Chem. Inf. Model. 2006, 46 (6) 2502-2514
-
(2006)
J. Chem. Inf. Model.
, vol.46
, Issue.6
, pp. 2502-2514
-
-
Auer, J.1
Bajorath, J.2
-
55
-
-
34250822958
-
3D QSAR Methods: Phase and Catalyst Compared
-
Evans, D. A.; Doman, T. N.; Thorner, D. A.; Bodkin, M. J. 3D QSAR Methods: Phase and Catalyst Compared J. Chem. Inf. Model. 2007, 47 (3) 1248-1257
-
(2007)
J. Chem. Inf. Model.
, vol.47
, Issue.3
, pp. 1248-1257
-
-
Evans, D.A.1
Doman, T.N.2
Thorner, D.A.3
Bodkin, M.J.4
-
56
-
-
77954075802
-
Gaussian processes for classification: QSAR modeling of ADMET and target activity
-
Obrezanova, O.; Segall, M. D. Gaussian processes for classification: QSAR modeling of ADMET and target activity J. Chem. Inf. Model. 2010, 50 (6) 1053-61
-
(2010)
J. Chem. Inf. Model.
, vol.50
, Issue.6
, pp. 1053-1061
-
-
Obrezanova, O.1
Segall, M.D.2
-
57
-
-
79952593481
-
StructRank: A new approach for ligand-based virtual screening
-
Rathke, F.; Hansen, K.; Brefeld, U.; Muller, K. R. StructRank: a new approach for ligand-based virtual screening J. Chem. Inf. Model. 2011, 51 (1) 83-92
-
(2011)
J. Chem. Inf. Model.
, vol.51
, Issue.1
, pp. 83-92
-
-
Rathke, F.1
Hansen, K.2
Brefeld, U.3
Muller, K.R.4
-
58
-
-
56449109358
-
Using Molecular Docking, 3D-QSAR, and Cluster Analysis for Screening Structurally Diverse Data Sets of Pharmacological Interest
-
Santos-Filho, O. A.; Cherkasov, A. Using Molecular Docking, 3D-QSAR, and Cluster Analysis for Screening Structurally Diverse Data Sets of Pharmacological Interest J. Chem. Inf. Model. 2008, 48 (10) 2054-2065
-
(2008)
J. Chem. Inf. Model.
, vol.48
, Issue.10
, pp. 2054-2065
-
-
Santos-Filho, O.A.1
Cherkasov, A.2
-
59
-
-
33750294461
-
The Pharmacophore Kernel for Virtual Screening with Support Vector Machines
-
Mahé, P.; Ralaivola, L.; Stoven, V.; Vert, J.-P. The Pharmacophore Kernel for Virtual Screening with Support Vector Machines J. Chem. Inf. Model. 2006, 46 (5) 2003-2014
-
(2006)
J. Chem. Inf. Model.
, vol.46
, Issue.5
, pp. 2003-2014
-
-
Mahé, P.1
Ralaivola, L.2
Stoven, V.3
Vert, J.-P.4
-
60
-
-
75149175715
-
Cheminformatics Analysis of Assertions Mined from Literature That Describe Drug-Induced Liver Injury in Different Species
-
Fourches, D.; Barnes, J. C.; Day, N. C.; Bradley, P.; Reed, J. Z.; Tropsha, A. Cheminformatics Analysis of Assertions Mined from Literature That Describe Drug-Induced Liver Injury in Different Species Chem. Res. Toxicol. 2009, 23 (1) 171-183
-
(2009)
Chem. Res. Toxicol.
, vol.23
, Issue.1
, pp. 171-183
-
-
Fourches, D.1
Barnes, J.C.2
Day, N.C.3
Bradley, P.4
Reed, J.Z.5
Tropsha, A.6
-
61
-
-
84866691007
-
-
Talete DRAGON (Software for Molecular Descriptor Calculation), 6.0; 2010
-
Talete DRAGON (Software for Molecular Descriptor Calculation), 6.0; 2010.
-
-
-
-
62
-
-
84866700756
-
-
MATLAB, R2009a; The MathWorks Inc.: 2009
-
MATLAB, R2009a; The MathWorks Inc.: 2009.
-
-
-
-
63
-
-
0000501656
-
-
In, Second International Symposium on Information Theory, 1973; Petrov, B. N. Csaki, F. Akadémiai Kiado
-
Akaike, H. In Information theory and an extension of the maximum likelihood principle, Second International Symposium on Information Theory, 1973; Petrov, B. N.; Csaki, F., Eds.; Akadémiai Kiado: 1973; pp 267-281.
-
(1973)
Information Theory and An Extension of the Maximum Likelihood Principle
, pp. 267-281
-
-
Akaike, H.1
-
64
-
-
0346500732
-
A distance measure between models: A tool for similarity/diversity analysis of model populations
-
Todeschini, R.; Consonni, V.; Pavan, M. A distance measure between models: a tool for similarity/diversity analysis of model populations Chemom. Intell. Lab. Syst. 2004, 70 (1) 55-61
-
(2004)
Chemom. Intell. Lab. Syst.
, vol.70
, Issue.1
, pp. 55-61
-
-
Todeschini, R.1
Consonni, V.2
Pavan, M.3
-
65
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Morgan Kaufmann Publishers Inc. Montreal, Quebec, Canada
-
Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th international joint conference on Artificial intelligence-Vol. 2; Morgan Kaufmann Publishers Inc.: Montreal, Quebec, Canada, 1995; pp 1137-1143.
-
(1995)
Proceedings of the 14th International Joint Conference on Artificial Intelligence
, vol.2
, pp. 1137-1143
-
-
Kohavi, R.1
-
69
-
-
0001694108
-
Preference structures II: Distances between asymmetric relations
-
Bogart, K. P. Preference structures II: distances between asymmetric relations SIAM J. Appl. Math. 1975, 29 (2) 254-262
-
(1975)
SIAM J. Appl. Math.
, vol.29
, Issue.2
, pp. 254-262
-
-
Bogart, K.P.1
-
70
-
-
0030825529
-
A general framework for distance-based consensus in ordinal ranking models
-
Cook, W. D.; Kress, M.; Seiford, L. M. A general framework for distance-based consensus in ordinal ranking models Eur. J. Oper. Res. 1997, 96 (2) 392-397
-
(1997)
Eur. J. Oper. Res.
, vol.96
, Issue.2
, pp. 392-397
-
-
Cook, W.D.1
Kress, M.2
Seiford, L.M.3
-
72
-
-
0037695279
-
-
World Scientific: Singapore.
-
Suykens, J. A. K.; Van Gestel, T.; De Brabanter, J.; De Moor, B.; Vandewalle, J. Least Squares Support Vector Machines; World Scientific: Singapore, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
74
-
-
0001884644
-
Individual comparisons by ranking methods
-
Wilcoxon, F. Individual comparisons by ranking methods Biom. Bull. 1945, 1 (6) 80-83
-
(1945)
Biom. Bull.
, vol.1
, Issue.6
, pp. 80-83
-
-
Wilcoxon, F.1
-
75
-
-
27744590591
-
QSAR applicabilty domain estimation by projection of the training set descriptor space: A review
-
Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T. QSAR applicabilty domain estimation by projection of the training set descriptor space: a review Altern. Lab. Anim. 2005, 33 (5) 445-59
-
(2005)
Altern. Lab. Anim.
, vol.33
, Issue.5
, pp. 445-459
-
-
Jaworska, J.1
Nikolova-Jeliazkova, N.2
Aldenberg, T.3
|