-
1
-
-
4444273205
-
Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding activity
-
Tong, W.; Xie, Q.; Hong, H.; Shi, L.; Fang, H.; Perkins, R. Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding activity. Environ. Health Perspect. 2004, 112 (12), 1249.
-
(2004)
Environ. Health Perspect.
, vol.112
, Issue.12
, pp. 1249
-
-
Tong, W.1
Xie, Q.2
Hong, H.3
Shi, L.4
Fang, H.5
Perkins, R.6
-
2
-
-
77949342214
-
3D-QSAR in Drug Design-A Review
-
Verma, J.; Khedkar, V.; Coutinho, E. 3D-QSAR in Drug Design-A Review. Curr. Top. Med. Chem. 2010, 10, 95-115.
-
(2010)
Curr. Top. Med. Chem.
, vol.10
, pp. 95-115
-
-
Verma, J.1
Khedkar, V.2
Coutinho, E.3
-
3
-
-
33746931581
-
On Outliers and Activity Cliffs - Why QSAR Often Disappoints
-
Maggiora, G. On Outliers and Activity Cliffs - Why QSAR Often Disappoints. J. Chem. Inf. Model. 2006, 46 (4), 1535.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, Issue.4
, pp. 1535
-
-
Maggiora, G.1
-
4
-
-
39449135396
-
The trouble with QSAR (or how I learned to stop worrying and embrace fallacy)
-
Johnson, S. The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). J. Chem. Inf. Model. 2008, 48 (1), 25-26.
-
(2008)
J. Chem. Inf. Model.
, vol.48
, Issue.1
, pp. 25-26
-
-
Johnson, S.1
-
5
-
-
0042416598
-
In silico ADME/Tox: Why models fail
-
Stouch, T.; Kenyon, J.; Johnson, S.; Chen, X.; Doweyko, A.; Li, Y. In silico ADME/Tox: why models fail. J. Comput.-Aided Mol. Des. 2003, 17 (4), 83-92.
-
(2003)
J. Comput.-Aided Mol. Des.
, vol.17
, Issue.4
, pp. 83-92
-
-
Stouch, T.1
Kenyon, J.2
Johnson, S.3
Chen, X.4
Doweyko, A.5
Li, Y.6
-
6
-
-
39149129373
-
QSAR: Dead or alive?
-
Doweyko, A. QSAR: dead or alive?. J. Comput.-Aided Mol. Des. 2008, 22 (2), 81-89.
-
(2008)
J. Comput.-Aided Mol. Des.
, vol.22
, Issue.2
, pp. 81-89
-
-
Doweyko, A.1
-
7
-
-
33845768010
-
Modeling Robust QSAR
-
Polanski, J.; Bak, A.; Gieleciak, R.; Magdziarz, T. Modeling Robust QSAR. J. Chem. Inf. Model. 2006, 46 (6), 2310-2318.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, Issue.6
, pp. 2310-2318
-
-
Polanski, J.1
Bak, A.2
Gieleciak, R.3
Magdziarz, T.4
-
8
-
-
70450181710
-
How to Recognize and Workaround Pitfalls in QSAR Studies: A Critical Review
-
Scior, T.; Medina-Franco, J.; Do, Q.; Martínez-Mayorga, K.; Rojas, Y.; Bernard, P. How to Recognize and Workaround Pitfalls in QSAR Studies: A Critical Review. Curr. Med. Chem. 2009, 16 (32), 4297-4313.
-
(2009)
Curr. Med. Chem.
, vol.16
, Issue.32
, pp. 4297-4313
-
-
Scior, T.1
Medina-Franco, J.2
Do, Q.3
Martínez-Mayorga, K.4
Rojas, Y.5
Bernard, P.6
-
9
-
-
33745821727
-
Can we estimate the accuracy of ADME-Tox predictions?
-
DOI 10.1016/j.drudis.2006.06.013, PII S1359644606002303
-
Tetko, I.; Bruneau, P.; Mewes, H.; Rohrer, D.; Poda, G. Can we estimate the accuracy of ADME-Tox predictions?. Drug Discovery Today 2006, 11 (15-16), 700-707. (Pubitemid 44038632)
-
(2006)
Drug Discovery Today
, vol.11
, Issue.15-16
, pp. 700-707
-
-
Tetko, I.V.1
Bruneau, P.2
Mewes, H.-W.3
Rohrer, D.C.4
Poda, G.I.5
-
10
-
-
58149095139
-
Promises and Pitfalls of Quantitative Structure- Activity Relationship Approaches for Predicting Metabolism and Toxicity
-
Zvinavashe, E.; Murk, A.; Rietjens, I. Promises and Pitfalls of Quantitative Structure- Activity Relationship Approaches for Predicting Metabolism and Toxicity. Chem. Res. Toxicol. 2008, 21 (12), 2229-2236.
-
(2008)
Chem. Res. Toxicol.
, vol.21
, Issue.12
, pp. 2229-2236
-
-
Zvinavashe, E.1
Murk, A.2
Rietjens, I.3
-
12
-
-
34250628103
-
Principles of QSAR models validation: Internal and external
-
Gramatica, P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 2007, 26 (5), 694-701.
-
(2007)
QSAR Comb. Sci.
, vol.26
, Issue.5
, pp. 694-701
-
-
Gramatica, P.1
-
13
-
-
36749045167
-
Exploring the impact of size of training sets for the development of predictive QSAR models
-
Roy, P.; Leonard, J.; Roy, K. Exploring the impact of size of training sets for the development of predictive QSAR models. Chemom. Intell. Lab. Syst. 2008, 90 (1), 31-42.
-
(2008)
Chemom. Intell. Lab. Syst.
, vol.90
, Issue.1
, pp. 31-42
-
-
Roy, P.1
Leonard, J.2
Roy, K.3
-
14
-
-
39749088786
-
hERG classification model based on a combination of support vector machine method and GRIND descriptors
-
Li, Q.; Jørgensen, F.; Oprea, T.; Brunak, S.; Taboureau, O. hERG classification model based on a combination of support vector machine method and GRIND descriptors. Mol. Pharmaceutics 2008, 5 (1), 117-127.
-
(2008)
Mol. Pharmaceutics
, vol.5
, Issue.1
, pp. 117-127
-
-
Li, Q.1
Jørgensen, F.2
Oprea, T.3
Brunak, S.4
Taboureau, O.5
-
15
-
-
44449173096
-
Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis
-
Zhu, H.; Tropsha, A.; Fourches, D.; Varnek, A.; Papa, E.; Gramatica, P.; O berg, T.; Dao, P.; Cherkasov, A.; Tetko, I. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. J. Chem. Inf. Model. 2008, 48 (4), 766-784.
-
(2008)
J. Chem. Inf. Model.
, vol.48
, Issue.4
, pp. 766-784
-
-
Zhu, H.1
Tropsha, A.2
Fourches, D.3
Varnek, A.4
Papa, E.5
Gramatica, P.6
Oberg, T.7
Dao, P.8
Cherkasov, A.9
Tetko, I.10
-
17
-
-
34250687911
-
Assessing applicability domains of toxicological QSARs: Definition, confidence in predicted values, and the role of mechanisms of action
-
Schultz, T.; Hewitt, M.; Netzeva, T.; Cronin, M. Assessing applicability domains of toxicological QSARs: definition, confidence in predicted values, and the role of mechanisms of action. QSAR Comb. Sci. 2007, 26 (2), 238-254.
-
(2007)
QSAR Comb. Sci.
, vol.26
, Issue.2
, pp. 238-254
-
-
Schultz, T.1
Hewitt, M.2
Netzeva, T.3
Cronin, M.4
-
22
-
-
76749092270
-
The WEKA data mining software: An update
-
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I. The WEKA data mining software: An update. ACM SIGKDD Explorations 2009, 11 (1), 10-18.
-
(2009)
ACM SIGKDD Explorations
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.6
-
23
-
-
0035478854
-
Random Forests
-
Breiman, L. Random Forests. Mach. Learn. 2001, 45 (1), 5-32.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
24
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley, J.; McNeil, B. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143 (1), 29.
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29
-
-
Hanley, J.1
McNeil, B.2
-
25
-
-
0001060216
-
The Centroid Approximation for Mixtures: Calculating Similarity and Deriving Structure- Activity Relationships
-
Sheridan, R. P. The Centroid Approximation for Mixtures: Calculating Similarity and Deriving Structure- Activity Relationships. J. Chem. Inf. Comput. Sci. 2000, 40 (6), 1456-1469.
-
(2000)
J. Chem. Inf. Comput. Sci.
, vol.40
, Issue.6
, pp. 1456-1469
-
-
Sheridan, R.P.1
-
26
-
-
70350378922
-
Global or local QSAR: Is there a way out?
-
Feher, M.; Ewing, T. Global or local QSAR: is there a way out? QSAR Comb. Sci. 2009, 28 (8), 850-855.
-
(2009)
QSAR Comb. Sci.
, vol.28
, Issue.8
, pp. 850-855
-
-
Feher, M.1
Ewing, T.2
-
27
-
-
0043132440
-
Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs
-
Eriksson, L.; Jaworska, J.; Worth, A.; Cronin, M.; McDowell, R.; Gramatica, P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs. Environ. Health Perspect. 2003, 111 (10), 1361.
-
(2003)
Environ. Health Perspect.
, vol.111
, Issue.10
, pp. 1361
-
-
Eriksson, L.1
Jaworska, J.2
Worth, A.3
Cronin, M.4
McDowell, R.5
Gramatica, P.6
-
29
-
-
34547663158
-
Identifying P-glycoprotein substrates using a support vector machine optimized by a particle swarm
-
Huang, J.; Ma, G.; Muhammad, I.; Cheng, Y. Identifying P-glycoprotein substrates using a support vector machine optimized by a particle swarm. J. Chem. Inf. Model. 2007, 47 (4), 1638-1647.
-
(2007)
J. Chem. Inf. Model.
, vol.47
, Issue.4
, pp. 1638-1647
-
-
Huang, J.1
Ma, G.2
Muhammad, I.3
Cheng, Y.4
-
30
-
-
0032474873
-
Three-Dimensional Quantitative Similarity- Activity Relationships (3D QSiAR) from SEAL Similarity Matrices
-
Kubinyi, H.; Hamprecht, F.; Mietzner, T. Three-Dimensional Quantitative Similarity- Activity Relationships (3D QSiAR) from SEAL Similarity Matrices. J. Med. Chem. 1998, 41 (14), 2553-2564.
-
(1998)
J. Med. Chem.
, vol.41
, Issue.14
, pp. 2553-2564
-
-
Kubinyi, H.1
Hamprecht, F.2
Mietzner, T.3
-
31
-
-
0002555784
-
The multivariate calibration problem in chemistry solved by the PLS method
-
Wold, S.; Martens, H.; Wold, H. The multivariate calibration problem in chemistry solved by the PLS method. Matrix Pencils 1983, 286-293.
-
(1983)
Matrix Pencils
, pp. 286-293
-
-
Wold, S.1
Martens, H.2
Wold, H.3
-
32
-
-
33846853313
-
Local and Global Quantitative Structure- Activity Relationship Modeling and Prediction for the Baseline Toxicity
-
Yuan, H.; Wang, Y.; Cheng, Y. Local and Global Quantitative Structure- Activity Relationship Modeling and Prediction for the Baseline Toxicity. J. Chem. Inf. Model. 2007, 47 (1), 159-169.
-
(2007)
J. Chem. Inf. Model.
, vol.47
, Issue.1
, pp. 159-169
-
-
Yuan, H.1
Wang, Y.2
Cheng, Y.3
-
33
-
-
78649494564
-
Consensus Ranking Approach to Understanding the Underlying Mechanism with QSAR
-
Shao, L.; Wu, L.; Fan, X.; Cheng, Y. Consensus Ranking Approach to Understanding the Underlying Mechanism With QSAR. J. Chem. Inf. Model. 2010, 50 (11), 1941-1948.
-
(2010)
J. Chem. Inf. Model.
, vol.50
, Issue.11
, pp. 1941-1948
-
-
Shao, L.1
Wu, L.2
Fan, X.3
Cheng, Y.4
-
34
-
-
80053403826
-
Ensemble methods in machine learning
-
Dietterich, T. Ensemble methods in machine learning. Mult. Classifier Syst. 2000, 1-15.
-
(2000)
Mult. Classifier Syst.
, pp. 1-15
-
-
Dietterich, T.1
-
35
-
-
34250857528
-
Ensemble feature selection: Consistent descriptor subsets for multiple QSAR models
-
Dutta, D.; Guha, R.; Wild, D.; Chen, T. Ensemble feature selection: consistent descriptor subsets for multiple QSAR models. J. Chem. Inf. Model. 2007, 47 (3), 989-997.
-
(2007)
J. Chem. Inf. Model.
, vol.47
, Issue.3
, pp. 989-997
-
-
Dutta, D.1
Guha, R.2
Wild, D.3
Chen, T.4
-
36
-
-
0036628567
-
On the use of neural network ensembles in QSAR and QSPR
-
Agrafiotis, D.; Cedeno, W.; Lobanov, V. On the use of neural network ensembles in QSAR and QSPR. J. Chem. Inf. Comput. Sci. 2002, 42 (4), 903-911.
-
(2002)
J. Chem. Inf. Comput. Sci.
, vol.42
, Issue.4
, pp. 903-911
-
-
Agrafiotis, D.1
Cedeno, W.2
Lobanov, V.3
-
37
-
-
10044239599
-
Ensemble methods for classification in cheminformatics
-
Merkwirth, C.; Mauser, H.; Schulz-Gasch, T.; Roche, O.; Stahl, M.; Lengauer, T. Ensemble methods for classification in cheminformatics. J. Chem. Inf. Comput. Sci. 2004, 44 (6), 1971-1978.
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, Issue.6
, pp. 1971-1978
-
-
Merkwirth, C.1
Mauser, H.2
Schulz-Gasch, T.3
Roche, O.4
Stahl, M.5
Lengauer, T.6
-
38
-
-
2342642858
-
The impact of combinatorial methodologies on medicinal chemistry
-
Sanchez-Martin, R.; Mittoo, S.; Bradley, M. The impact of combinatorial methodologies on medicinal chemistry. Curr. Top. Med. Chem. 2004, 4 (7), 653-669.
-
(2004)
Curr. Top. Med. Chem.
, vol.4
, Issue.7
, pp. 653-669
-
-
Sanchez-Martin, R.1
Mittoo, S.2
Bradley, M.3
-
39
-
-
45749146722
-
Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F
-
Wang, X.; Tang, H.; Golbraikh, A.; Tropsha, A. Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F. J. Chem. Inf. Model. 2008, 48 (5), 997-1013.
-
(2008)
J. Chem. Inf. Model.
, vol.48
, Issue.5
, pp. 997-1013
-
-
Wang, X.1
Tang, H.2
Golbraikh, A.3
Tropsha, A.4
|