메뉴 건너뛰기




Volumn 50, Issue 9, 2012, Pages 3463-3473

Incremental import vector machines for classifying hyperspectral data

Author keywords

Hyperspectral data; import vector machines; incremental learning; self training

Indexed keywords

CLASSIFICATION ACCURACY; COMPUTATION TIME; HYPERSPECTRAL DATA; INCREMENTAL LEARNING; LARGE DATASETS; PROBABILISTIC INFORMATION; PROBABILISTIC OUTPUT; RUNTIMES; SELF-TRAINING; SPARSE KERNELS; SUPPORT VECTOR; TRAINING SAMPLE; VECTOR MACHINES;

EID: 84865698912     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2012.2184292     Document Type: Article
Times cited : (43)

References (58)
  • 1
    • 67650234021 scopus 로고    scopus 로고
    • Three decades of hyperspectral remote sensing of the earth: A personal view
    • Sep
    • A. Goetz, "Three decades of hyperspectral remote sensing of the earth: A personal view," Remote Sens. Environ., vol. 113, no. Suppl. 1, pp. S5-S16, Sep. 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.SUPPL. 1
    • Goetz, A.1
  • 2
    • 77953871614 scopus 로고    scopus 로고
    • Sensitivity of support vector machines to random feature selection in classification of hyperspectral data
    • Jul
    • B. Waske, S. van der Linden, J. Benediktsson, A. Rabe, and P. Hostert, "Sensitivity of support vector machines to random feature selection in classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2880-2889, Jul. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.7 , pp. 2880-2889
    • Waske, B.1    Van Der Linden, S.2    Benediktsson, J.3    Rabe, A.4    Hostert, P.5
  • 3
    • 79959863053 scopus 로고    scopus 로고
    • Mapping postfire vegetation recovery using EO-1 hyperion imagery
    • Mar
    • G. Mitri and I. Gitas, "Mapping postfire vegetation recovery using EO-1 hyperion imagery," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 3, pp. 1613-1618, Mar. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.3 , pp. 1613-1618
    • Mitri, G.1    Gitas, I.2
  • 4
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • DOI 10.1109/TGRS.2004.842478
    • J. Benediktsson, J. Palmason, and J. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491, Mar. 2005. (Pubitemid 40320270)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 5
    • 67651151076 scopus 로고    scopus 로고
    • Simulation of optical remotesensing scenes with application to the EnMAP hyperspectral mission
    • Jul
    • L. Guanter, K. Segl, and H. Kaufmann, "Simulation of optical remotesensing scenes with application to the EnMAP hyperspectral mission," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2340-2351, Jul. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.7 , pp. 2340-2351
    • Guanter, L.1    Segl, K.2    Kaufmann, H.3
  • 6
    • 14644399190 scopus 로고    scopus 로고
    • Analysis of remotely sensed data: The formative decades and the future
    • DOI 10.1109/TGRS.2004.837326
    • J. Richards, "Analysis of remotely sensed data: The formative decades and the future," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 422- 432, Mar. 2005. (Pubitemid 40320265)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 422-432
    • Richards, J.A.1
  • 8
    • 34548096221 scopus 로고    scopus 로고
    • Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada
    • DOI 10.1016/j.rse.2007.03.015, PII S0034425707001228
    • X. Chen, T. Warner, and D. Campagna, "Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada," Remote Sens. Environ., vol. 110, no. 3, pp. 344-356, Oct. 2007. (Pubitemid 47287766)
    • (2007) Remote Sensing of Environment , vol.110 , Issue.3 , pp. 344-356
    • Chen, X.1    Warner, T.A.2    Campagna, D.J.3
  • 9
    • 45849104692 scopus 로고    scopus 로고
    • Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines
    • Oct
    • S. Van der Linden, A. Janz, B. Waske, M. Eiden, and P. Hostert, "Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines," J. Appl. Remote Sens., vol. 1, no. 1, p. 013 543, Oct. 2007.
    • (2007) J. Appl. Remote Sens. , vol.1 , Issue.1 , pp. 013-543
    • Van Der Linden, S.1    Janz, A.2    Waske, B.3    Eiden, M.4    Hostert, P.5
  • 11
    • 33747086525 scopus 로고    scopus 로고
    • Some issues in the classification of DAIS hyperspectral data
    • DOI 10.1080/01431160500185227, PII U51566340125615V
    • M. Pal and P. Mather, "Some issues in the classification of DAIS hyperspectral data," Int. J. Remote Sens., vol. 27, no. 14, pp. 2895-2916, 2006. (Pubitemid 44219162)
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.14 , pp. 2895-2916
    • Pal, M.1    Mather, P.M.2
  • 12
    • 77953005976 scopus 로고    scopus 로고
    • Mapping of hyperspectral AVIRIS data using machine-learning algorithms
    • Sep
    • B. Waske, J. Benediktsson, K. Arnason, and J. Sveinsson, "Mapping of hyperspectral AVIRIS data using machine-learning algorithms," Can. J. Remote Sens., vol. 35, no. S1, pp. S106-S116, Sep. 2009.
    • (2009) Can. J. Remote Sens. , vol.35 , Issue.S1
    • Waske, B.1    Benediktsson, J.2    Arnason, K.3    Sveinsson, J.4
  • 13
    • 77957993814 scopus 로고    scopus 로고
    • Spatio-spectral remote sensing image classification with graph kernels
    • Oct
    • G. Camps-Valls, N. Shervashidze, and K. M. Borgwardt, "Spatio-spectral remote sensing image classification with graph kernels," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 741-745, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 741-745
    • Camps-Valls, G.1    Shervashidze, N.2    Borgwardt, K.M.3
  • 14
  • 15
    • 57649140412 scopus 로고    scopus 로고
    • Multiclass and binary SVM classification: Implications for training and classification users
    • Apr
    • A. Mathur and G. Foody, "Multiclass and binary SVM classification: Implications for training and classification users," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 241-245, Apr. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.2 , pp. 241-245
    • Mathur, A.1    Foody, G.2
  • 17
    • 40349100592 scopus 로고    scopus 로고
    • RVM-based multi-class classification of remotely sensed data
    • DOI 10.1080/01431160701822115, PII 791027033
    • G. Foody, "RVM-based multi-class classification of remotely sensed data," Int. J. Remote Sens., vol. 29, no. 6, pp. 1817-1823, Mar. 2008. (Pubitemid 351338305)
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.6 , pp. 1817-1823
    • Foody, G.M.1
  • 18
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • DOI 10.1162/15324430152748236
    • M. Tipping, "Sparse Bayesian learning and the relevance vectormachine," J. Mach. Learn. Res., vol. 1, pp. 211-244, Sep. 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 19
    • 77957008534 scopus 로고    scopus 로고
    • Uncertainty analysis for the classification of multispectral satellite images using SVMs and SOMs
    • Oct
    • F. Giacco, C. Thiel, L. Pugliese, S. Scarpetta, and M. Marinaro, "Uncertainty analysis for the classification of multispectral satellite images using SVMs and SOMs," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3769-3779, Oct. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.10 , pp. 3769-3779
    • Giacco, F.1    Thiel, C.2    Pugliese, L.3    Scarpetta, S.4    Marinaro, M.5
  • 20
    • 77953710563 scopus 로고    scopus 로고
    • Learning conditional random fields for classification of hyperspectral images
    • Jul
    • P. Zhong and R.Wang, "Learning conditional random fields for classification of hyperspectral images," IEEE Trans. Image Process, vol. 19, no. 7, pp. 1890-1907, Jul. 2010.
    • (2010) IEEE Trans. Image Process , vol.19 , Issue.7 , pp. 1890-1907
    • Zhong, P.1    Wang, R.2
  • 21
    • 77958017904 scopus 로고    scopus 로고
    • SVM-and MRF-based method for accurate classification of hyperspectral images
    • Oct
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. Benediktsson, "SVM-and MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.4
  • 22
    • 64149108290 scopus 로고    scopus 로고
    • Dynamic learning of SMLR for feature selection and classification of hyperspectral data
    • Apr
    • P. Zhong, P. Zhang, and R.Wang, "Dynamic learning of SMLR for feature selection and classification of hyperspectral data," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 280-284, Apr. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.2 , pp. 280-284
    • Zhong, P.1    Zhang, P.2    Wang, R.3
  • 23
    • 33750584880 scopus 로고    scopus 로고
    • Logistic regression for feature selection and soft classification of remote sensing data
    • DOI 10.1109/LGRS.2006.877949, 1715302
    • Q. Cheng, P. Varshney, and M. Arora, "Logistic regression for feature selection and soft classification of remote sensing data," IEEE Geosci. Remote Sens. Lett., vol. 3, no. 4, pp. 491-494, Oct. 2006. (Pubitemid 44679657)
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , Issue.4 , pp. 491-494
    • Cheng, Q.1    Varshney, P.K.2    Arora, M.K.3
  • 24
    • 30044437592 scopus 로고    scopus 로고
    • A fast dual algorithm for kernel logistic regression
    • DOI 10.1007/s10994-005-0768-5
    • S. Keerthi, K. Duan, S. Shevade, and A. Poo, "A fast dual algorithm for kernel logistic regression," Mach. Learn., vol. 61, no. 1, pp. 151-165, Nov. 2005. (Pubitemid 43049366)
    • (2005) Machine Learning , vol.61 , Issue.1-3 , pp. 151-165
    • Keerthi, S.S.1    Duan, K.B.2    Shevade, S.K.3    Poo, A.N.4
  • 25
    • 10044250988 scopus 로고    scopus 로고
    • Efficient model selection for kernel logistic regression
    • G. Cawley and N. Talbot, "Efficient model selection for kernel logistic regression," in Proc. Pattern Recognit., 2004, vol. 2, pp. 439-442.
    • (2004) Proc. Pattern Recognit. , vol.2 , pp. 439-442
    • Cawley, G.1    Talbot, N.2
  • 26
    • 79957639950 scopus 로고    scopus 로고
    • Bayesian hyperspectral image segmentation with discriminative class learning
    • Jun
    • J. Borges, J. Bioucas-Dias, and A. Marcal, "Bayesian hyperspectral image segmentation with discriminative class learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2151-2164, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 2151-2164
    • Borges, J.1    Bioucas-Dias, J.2    Marcal, A.3
  • 27
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new Bayesian approach with active learning
    • Oct
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Hyperspectral image segmentation using a new Bayesian approach with active learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3947-3960, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 28
  • 30
    • 35348821947 scopus 로고    scopus 로고
    • Hyperspectral image classification using relevance vector machines
    • DOI 10.1109/LGRS.2007.903069
    • B. Demir and S. Erturk, "Hyperspectral image classification using relevance vector machines," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 586-590, Oct. 2007. (Pubitemid 47588035)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.4 , pp. 586-590
    • Demir, B.1    Erturk, S.2
  • 31
    • 15944424353 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • DOI 10.1198/106186005X25619
    • J. Zhu and T. Hastie, "Kernel logistic regression and the import vector machine," J. Comput. Graph. Stat., vol. 14, no. 1, pp. 185-205, Mar. 2005. (Pubitemid 40447832)
    • (2005) Journal of Computational and Graphical Statistics , vol.14 , Issue.1 , pp. 185-205
    • Zhu, J.1    Hastie, T.2
  • 32
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • May
    • M. Pal and G. Foody, "Feature selection for classification of hyperspectral data by SVM," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2297-2307, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.2
  • 33
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Jun
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 606-617, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 34
    • 78049282844 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085-4098, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 35
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • DOI 10.1109/TGRS.2007.910220, 4469868
    • S. Rajan, J. Ghosh, and M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008. (Pubitemid 351459470)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 36
    • 85094067550 scopus 로고    scopus 로고
    • Weakly supervised natural language learning without redundant views
    • V. Ng and C. Cardie, "Weakly supervised natural language learning without redundant views," in Proc. NAACL, 2003, pp. 94-101.
    • (2003) Proc. NAACL , pp. 94-101
    • Ng, V.1    Cardie, C.2
  • 37
    • 33646590894 scopus 로고    scopus 로고
    • Discriminative random fields
    • DOI 10.1159/000093916
    • S. Kumar and M. Hebert, "Discriminative random fields," Int. J. Comput. Vis., vol. 68, no. 2, pp. 179-201, Jun. 2006. (Pubitemid 43724245)
    • (2006) International Journal of Computer Vision , vol.68 , Issue.2 , pp. 179-201
    • Kumar, S.1    Hebert, M.2
  • 38
    • 69949122268 scopus 로고    scopus 로고
    • Learning sparse CRFs for feature selection and classification of hyperspectral imagery
    • Dec
    • P. Zhong and R. Wang, "Learning sparse CRFs for feature selection and classification of hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 12, pp. 4186-4197, Dec. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.12 , pp. 4186-4197
    • Zhong, P.1    Wang, R.2
  • 39
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • DOI 10.1016/j.cviu.2005.09.012, PII S1077314206001688
    • L. Fei-Fei, R. Fergus, and P. Perona, "Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories," Comput. Vis. Image Understand., vol. 106, no. 1, pp. 59-70, Apr. 2007. (Pubitemid 46528761)
    • (2007) Computer Vision and Image Understanding , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 42
    • 77954563782 scopus 로고    scopus 로고
    • Multiple incremental decremental learning of support vector machines
    • Jul
    • M. Karasuyama and I. Takeuchi, "Multiple incremental decremental learning of support vector machines," IEEE Trans. Neural Netw., vol. 21, no. 7, pp. 1048-1059, Jul. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.7 , pp. 1048-1059
    • Karasuyama, M.1    Takeuchi, I.2
  • 43
    • 0041916184 scopus 로고    scopus 로고
    • Incremental support vectormachine classification
    • G. Fung and O.Mangasarian, "Incremental Support VectorMachine Classification," in Proc. SIAM, 2002, pp. 247-260.
    • (2002) Proc. SIAM , pp. 247-260
    • Fung, G.1    Mangasarian, O.2
  • 44
    • 0141836275 scopus 로고    scopus 로고
    • Adaptive sparseness for supervised learning
    • Sep
    • M. Figueiredo, "Adaptive sparseness for supervised learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 9, pp. 1050-1159, Sep. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.9 , pp. 1050-1159
    • Figueiredo, M.1
  • 46
    • 0038891993 scopus 로고    scopus 로고
    • Sparse on-line Gaussian processes
    • Mar
    • L. Csató and M. Opper, "Sparse on-line Gaussian processes," Neural Comput., vol. 14, no. 3, pp. 641-668, Mar. 2002.
    • (2002) Neural Comput. , vol.14 , Issue.3 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 49
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press
    • J. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods - Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods-Support Vector Learning. Cambridge, MA , pp. 185-208
    • Platt, J.1
  • 50
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • DOI 10.1109/72.991427, PII S1045922702018052
    • C. Hsu and C. Lin, "A comparison of methods for multiclass support vector machines," IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415-425, Mar. 2002. (Pubitemid 34475042)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 52
    • 0005255842 scopus 로고    scopus 로고
    • The class imbalance problem: Significance and strategies
    • N. Japkowicz, "The class imbalance problem: Significance and strategies," in Proc. Int. Conf. Artif. Intell., 2000, vol. 1, pp. 111-117.
    • (2000) Proc. Int. Conf. Artif. Intell. , vol.1 , pp. 111-117
    • Japkowicz, N.1
  • 55
    • 77953872402 scopus 로고    scopus 로고
    • A dynamic subspace method for hyperspectral image classification
    • Jul
    • J.-M. Yang, B.-C. Kuo, P.-T. Yu, and C.-H. Chuang, "A dynamic subspace method for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2840-2853, Jul. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.7 , pp. 2840-2853
    • Yang, J.-M.1    Kuo, B.-C.2    Yu, P.-T.3    Chuang, C.-H.4
  • 56
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.