메뉴 건너뛰기




Volumn 46, Issue 12, 2008, Pages 4186-4197

Learning sparse CRFs for feature selection and classification of hyperspectral imagery

Author keywords

Conditional random field (CRF); Contextual information; Feature selection; Hyperspectral image; Image classification; Machine learning; Multinomial logistic regression (MLR); Sparse CRF (SCRF)

Indexed keywords

CONDITIONAL RANDOM FIELD; CONTEXTUAL INFORMATION; FEATURE SELECTION; HYPER-SPECTRAL IMAGES; MACHINE LEARNING; MULTINOMIAL LOGISTIC REGRESSION (MLR); SPARSE CRF (SCRF);

EID: 69949122268     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2008.2001921     Document Type: Article
Times cited : (38)

References (51)
  • 2
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F.Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 3
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • DOI 10.1109/TGRS.2006.880628, 1717732
    • Y. Bazi and F. Melgani, "Toward an optimal SVM classification system for hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3374-3385, Nov. 2006. (Pubitemid 44711679)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 4
    • 34547399927 scopus 로고    scopus 로고
    • A support vector domain description approach to supervised classification of remote sensing images
    • DOI 10.1109/TGRS.2007.897425
    • J. Muñoz-Marí, L. Bruzzone, and G. Camps-Valls, "A support vector domain description approach to supervised classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 8, pp. 2683-2692, Aug. 2007. (Pubitemid 47171196)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.8 , pp. 2683-2692
    • Munoz-Mari, J.1    Bruzzone, L.2    Camps-Valls, G.3
  • 5
    • 34249810956 scopus 로고    scopus 로고
    • Semisupervised classification of hyperspectral images by SVMs optimized in the primal
    • DOI 10.1109/TGRS.2007.894550
    • M. Chi and L. Bruzzone, "Semisupervised classification of hyperspectral images By SVMs optimized in the primal," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1870-1880, Jun. 2007. (Pubitemid 46853295)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.6 , pp. 1870-1880
    • Chi, M.1    Bruzzone, L.2
  • 6
    • 0036762743 scopus 로고    scopus 로고
    • A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps
    • DOI 10.1109/TGRS.2002.803794
    • L. Bruzzone and R. Cossu, "A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 1984-1996, Sep. 2002. (Pubitemid 35458396)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 1984-1996
    • Bruzzone, L.1    Cossu, R.2
  • 7
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • Oct.
    • G. Camps-Valls, T. V Bandos Marsheva, and D. Zhou, "Semi-supervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos Marsheva, T.V.2    Zhou, D.3
  • 8
    • 36349029276 scopus 로고    scopus 로고
    • Border vector detection and adaptation for classification of multispectral and hyperspectral remote sensing images
    • DOI 10.1109/TGRS.2007.900699
    • N. G. Kasapoglu and O. K. Ersoy, "Border vector detection and adaptation for classification of multispectral and hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3880-3893, Dec. 2007. (Pubitemid 350157826)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3880-3893
    • Kasapoglu, N.G.1    Ersoy, O.K.2
  • 9
    • 35648938713 scopus 로고    scopus 로고
    • Hyperspectral image classification by bootstrap AdaBoost with random decision stumps
    • DOI 10.1109/TGRS.2007.903708
    • S. Kawaguchi and R. Nishii, "Hyperspectral image classification by bootstrap AdaBoost with random decision stumps," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11, pp. 3845-3851, Nov. 2007. (Pubitemid 350025478)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.11 , pp. 3845-3851
    • Kawaguchi, S.1    Nishii, R.2
  • 10
    • 20444500972 scopus 로고    scopus 로고
    • A bayesian MRP framework for labeling terrain using hyperspectral imaging
    • DOI 10.1109/TGRS.2005.846865
    • R. Neher and A. Srivastava, "A Bayesian MRF framework for labeling terrain using hyperspectral imaging," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1363-1374, Jun. 2005. (Pubitemid 40811945)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1363-1374
    • Neher, R.1    Srivastava, A.2
  • 11
    • 0036875946 scopus 로고    scopus 로고
    • Adaptive Bayesian contextual classification based on Markov
    • random fields, Nov.
    • Q. Jackson and D. A. Landgrebe, "Adaptive Bayesian contextual classification based on Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2454-2463, Nov. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.11 , pp. 2454-2463
    • Jackson, Q.1    Landgrebe, D.A.2
  • 12
    • 33947179842 scopus 로고    scopus 로고
    • Fuzzy markov
    • random fields versus chains for multispectral image segmentation, Nov.
    • F. Salzenstein and C. Collet, "Fuzzy Markov random fields versus chains for multispectral image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 11, pp. 1753-1767, Nov. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.11 , pp. 1753-1767
    • Salzenstein, F.1    Collet, C.2
  • 13
    • 0141885057 scopus 로고    scopus 로고
    • A tree-structured Markov
    • random field model for Bayesian image segmentation, Oct.
    • C. D'Elia, G. Poggi, and G. Scarpa, "A tree-structured Markov random field model for Bayesian image segmentation," IEEE Trans. Image Process., vol. 12, no. 10, pp. 1259-1273, Oct. 2003.
    • (2003) IEEE Trans. Image Process. , vol.12 , Issue.10 , pp. 1259-1273
    • D'elia, C.1    Poggi, G.2    Scarpa, G.3
  • 14
    • 23844524154 scopus 로고    scopus 로고
    • A unified framework for MAP estimation in remote sensing image segmentation
    • DOI 10.1109/TGRS.2005.849059
    • A. A. Farag, R. M. Mohamed, and A. El-Baz, "A unified framework for MAP estimation in remote sensing image segmentation," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 7, pp. 1617-1634, Jul. 2005. (Pubitemid 41164672)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.7 , pp. 1617-1634
    • Farag, A.A.1    Mohamed, R.M.2    El-Baz, A.3
  • 16
    • 39549088344 scopus 로고    scopus 로고
    • Bayesian approach with Hidden Markov modeling and mean field approximation for hyperspectral data analysis
    • DOI 10.1109/TIP.2007.914227
    • N. Bali and A. Mohammad-Djafari, "Bayesian approach with hidden Markov modeling and mean field approximation for hyperspectral data analysis," IEEE Trans. Image Process., vol. 17, no. 2, pp. 217-225, Feb. 2008. (Pubitemid 351279249)
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.2 , pp. 217-225
    • Bali, N.1    Mohammad-Djafari, A.2
  • 17
    • 0037247155 scopus 로고    scopus 로고
    • A class of discrete multiresolution random fields and its application to image segmentation
    • Jan.
    • R. Wilson and C.-T. Li, "A class of discrete multiresolution random fields and its application to image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 1, pp. 42-56, Jan. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.1 , pp. 42-56
    • Wilson, R.1    Li, C.-T.2
  • 18
    • 0028392841 scopus 로고
    • A multiscalerandom field model for Bayesian image segmentation
    • Mar.
    • C. A. Bouman and M. Shapiro, "A multiscale random field model for Bayesian image segmentation," IEEE Trans. Image Process., vol. 3, no. 2, pp. 162-177, Mar. 1994.
    • (1994) IEEE Trans. Image Process. , vol.3 , Issue.2 , pp. 162-177
    • Bouman, C.A.1    Shapiro, M.2
  • 19
    • 0042440720 scopus 로고    scopus 로고
    • Man-made structure detection in natural images using a causal multiscalerandom field
    • I-119-I-126
    • S. Kumar and M. Hebert, "Man-made structure detection in natural images using a causal multiscale random field," in Proc. IEEE Conf. CVPR, 2003, vol. 1, pp. I-119-I-126.
    • (2003) Proc. IEEE Conf. CVPR , vol.1
    • Kumar, S.1    Hebert, M.2
  • 21
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in Proc. Int. Conf. ML, 2001, pp. 282-289.
    • (2001) Proc. Int. Conf. ML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 22
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual interaction in classification
    • S. Kumar and M. Hebert, "Discriminative random fields: A discriminative framework for contextual interaction in classification," in Proc. Int. Conf. ICCV, 2003, vol. 2, pp. 1150-1157.
    • (2003) Proc. Int. Conf. ICCV , vol.2 , pp. 1150-1157
    • Kumar, S.1    Hebert, M.2
  • 23
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizer
    • Jan.
    • G. F. Hughs, "On the mean accuracy of statistical pattern recognizer," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughs, G.F.1
  • 24
    • 36348971282 scopus 로고    scopus 로고
    • A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images
    • DOI 10.1109/TGRS.2007.907109
    • P. Zhong and R. Wang, "A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3978-3988, Dec. 2007. (Pubitemid 350157834)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3978-3988
    • Zhong, P.1    Wang, R.2
  • 25
    • 10244268660 scopus 로고    scopus 로고
    • Efficiently inducing features of conditional random fields
    • A. McCallum, "Efficiently inducing features of conditional random fields," in Proc. Conf. UAI, 2003, pp. 403-410.
    • (2003) Proc. Conf. UAI , pp. 403-410
    • McCallum, A.1
  • 26
    • 46149124595 scopus 로고    scopus 로고
    • Learning flexible features for conditional random fields
    • Aug.
    • L. Stewart, X. He, and R. S. Zemel, "Learning flexible features for conditional random fields," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 8, pp. 1415-1426, Aug. 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.8 , pp. 1415-1426
    • Stewart, L.1    He, X.2    Zemel, R.S.3
  • 28
    • 33745811191 scopus 로고    scopus 로고
    • Approximate parameter learning in discriminative fields
    • S. Kumar and M. Hebert, "Approximate parameter learning in discriminative fields," Snowbird. Learning Workshop, 2004.
    • (2004) Snowbird. Learning Workshop
    • Kumar, S.1    Hebert, M.2
  • 29
    • 33846636871 scopus 로고    scopus 로고
    • Extraction of spectral channels from hyperspectral images for classification purposes
    • DOI 10.1109/TGRS.2006.886177
    • S. B. Serpico and G. Moser, "Extraction of spectral channels from hyperspectral images for classification purposes," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 2, pp. 484-495, Feb. 2007. (Pubitemid 46183043)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.2 , pp. 484-495
    • Serpico, S.B.1    Moser, G.2
  • 30
    • 0036991339 scopus 로고    scopus 로고
    • A model-based mixture-supervised classification approach in hyperspectral data analysis
    • Dec.
    • D. Landgrebe and M. Dundar, "A model-based mixture-supervised classification approach in hyperspectral data analysis," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 12, pp. 2692-2699, Dec. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.12 , pp. 2692-2699
    • Landgrebe, D.1    Dundar, M.2
  • 31
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • Sep.
    • J. Besag, "Statistical analysis of non-lattice data," Statistician, vol. 24, no. 3, pp. 179-195, Sep. 1975.
    • (1975) Statistician , vol.24 , Issue.3 , pp. 179-195
    • Besag, J.1
  • 32
    • 34547987363 scopus 로고    scopus 로고
    • Piecewise pseudolikelihood for efficient training of conditional random fields
    • C. Sutton and A. McCallum, "Piecewise pseudolikelihood for efficient training of conditional random fields," in Proc. Conf. ICML, 2007, pp. 863-870.
    • (2007) Proc. Conf. ICML , pp. 863-870
    • Sutton, C.1    McCallum, A.2
  • 33
    • 80053230819 scopus 로고    scopus 로고
    • Piecewise training of undirected models
    • C. Sutton and A. McCallum, "Piecewise training of undirected models," in Proc. Conf. UAI, 2005, pp. 568-575.
    • (2005) Proc. Conf. UAI , pp. 568-575
    • Sutton, C.1    McCallum, A.2
  • 34
    • 33645967749 scopus 로고    scopus 로고
    • Regularisation techniques for conditional random fields: Parameterized versus parameter-free
    • A. Smith andM. Osborne, "Regularisation techniques for conditional random fields: Parameterized versus parameter-free," in Proc. Conf. IJCNLP, 2005, pp. 896-907.
    • (2005) Proc. Conf. IJCNLP , pp. 896-907
    • Smith, A.1    Osborne, M.2
  • 35
    • 29244464687 scopus 로고    scopus 로고
    • Information extraction from research papers using conditional random fields
    • DOI 10.1016/j.ipm.2005.09.002, PII S0306457305001172
    • F. Peng and A. McCallum, "Information extraction from research papers using conditional random fields," Inf. Process. Manag., vol. 42, no. 4, pp. 963-979, Jul. 2006. (Pubitemid 41828296)
    • (2006) Information Processing and Management , vol.42 , Issue.4 , pp. 963-979
    • Peng, F.1    McCallum, A.2
  • 36
    • 33750584880 scopus 로고    scopus 로고
    • Logistic regression for feature selection and soft classification of remote sensing data
    • DOI 10.1109/LGRS.2006.877949, 1715302
    • Q. Cheng, P. K. Varshney, and M. K. Arora, "Logistic regression for feature selection and soft classification of remote sensing data," IEEE Geosci. Remote Sens. Lett., vol. 3, no. 4, pp. 491-494, Oct. 2006. (Pubitemid 44679657)
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , Issue.4 , pp. 491-494
    • Cheng, Q.1    Varshney, P.K.2    Arora, M.K.3
  • 37
    • 64149108290 scopus 로고    scopus 로고
    • Dynamic learning of sparse multinomial logistic regression for feature selection and classification of hyperspectral data
    • Apr.
    • P. Zhong, P. Zhang, and R. Wang, "Dynamic learning of sparse multinomial logistic regression for feature selection and classification of hyperspectral data," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 280-284, Apr. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.2 , pp. 280-284
    • Zhong, P.1    Zhang, P.2    Wang, R.3
  • 38
    • 0000364411 scopus 로고
    • Selection of variables in discriminant analysis by F-statistic and error rate
    • Nov.
    • J. D. F. Habbema and J. Hermans, "Selection of variables in discriminant analysis by F-statistic and error rate," Technometrics, vol. 19, no. 4, pp. 487-493, Nov. 1977.
    • (1977) Technometrics , vol.19 , Issue.4 , pp. 487-493
    • Habbema, J.D.F.1    Hermans, J.2
  • 39
    • 33745848658 scopus 로고    scopus 로고
    • A hierarchical field framework for unified context-based classification
    • DOI 10.1109/ICCV.2005.9, 1544868, Proceedings - 10th IEEE International Conference on Computer Vision, ICCV 2005
    • S. Kumar and M. Hebert, "A hierarchical field framework for unified context-based classification," in Proc. Int. Conf. ICCV, 2005, pp. 1284-1291. (Pubitemid 44042328)
    • (2005) Proceedings of the IEEE International Conference on Computer Vision , vol.II , pp. 1284-1291
    • Kumar, S.1    Hebert, M.2
  • 40
    • 34047200109 scopus 로고    scopus 로고
    • Sharing visual features for multiclass and multiview object detection
    • May
    • A. Torralba, K. P. Murphy, and W. T. Freeman, "Sharing visual features for multiclass and multiview object detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 5, pp. 854-869, May 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.5 , pp. 854-869
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3
  • 41
    • 33646590894 scopus 로고    scopus 로고
    • Discriminative random fields
    • DOI 10.1159/000093916
    • S. Kumar and M. Hebert, "Discriminative random fields," Int. J. Comput. Vis., vol. 68, no. 2, pp. 179-201, Jun. 2006. (Pubitemid 43724245)
    • (2006) International Journal of Computer Vision , vol.68 , Issue.2 , pp. 179-201
    • Kumar, S.1    Hebert, M.2
  • 42
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • Jan.
    • P. Williams, "Bayesian regularization and pruning using a Laplace prior," Neural Comput., vol. 7, no. 1, pp. 117-143, Jan. 1995.
    • (1995) Neural Comput. , vol.7 , Issue.1 , pp. 117-143
    • Williams, P.1
  • 43
    • 34248137881 scopus 로고    scopus 로고
    • On Bayesian classification with Laplace priors
    • DOI 10.1016/j.patrec.2007.02.010, PII S0167865507000657
    • A. Kaban, "On Bayesian classification with Laplace priors," Pattern Recognit. Lett., vol. 28, no. 10, pp. 1271-1282, Jul. 2007. (Pubitemid 46710183)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.10 , pp. 1271-1282
    • Kaban, A.1
  • 44
    • 32144452542 scopus 로고    scopus 로고
    • Sequence features of DNA binding sites reveal structural class of associated transcription factor
    • DOI 10.1093/bioinformatics/bti731
    • L. Narlikar and A. J. Hartemink, "Sequence features of DNA binding sites reveal structural class of associated transcription factor," Bioinformatics, vol. 22, no. 2, pp. 157-163, Jan. 2006. (Pubitemid 43205401)
    • (2006) Bioinformatics , vol.22 , Issue.2 , pp. 157-163
    • Narlikar, L.1    Hartemink, A.J.2
  • 45
    • 0040528764 scopus 로고
    • Multinomial logistic regression algorithm
    • Mar.
    • D. Bohning, "Multinomial logistic regression algorithm," Ann. Inst. Stat. Math., vol. 44, no. 1, pp. 197-200, Mar. 1992.
    • (1992) Ann. Inst. Stat. Math. , vol.44 , Issue.1 , pp. 197-200
    • Bohning, D.1
  • 47
    • 84898964205 scopus 로고    scopus 로고
    • A revolution: Belief propagation in graphs with cycles
    • B. Frey and D. J. C. Mackay, "A revolution: Belief propagation in graphs with cycles," in Proc. Conf. NIPS, 1997, vol. 10, pp. 479-485.
    • (1997) Proc. Conf. NIPS , vol.10 , pp. 479-485
    • Frey, B.1    MacKay, D.J.C.2
  • 48
    • 0141836275 scopus 로고    scopus 로고
    • Adaptive sparseness for supervised learning
    • Sep.
    • M. A. T. Figueiredo, "Adaptive sparseness for supervised learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 9, pp. 1150-1159, Sep. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.9 , pp. 1150-1159
    • Figueiredo, M.A.T.1
  • 49
    • 34247473104 scopus 로고    scopus 로고
    • Using combination of statistical models and multilevel structural information for detecting urban areas from a single gray-level image
    • DOI 10.1109/TGRS.2007.893739
    • P. Zhong and R. Wang, "Using combination of statistical models and multilevel structural information for detecting urban areas from a single gray-level image," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 5, pp. 1469-1482, May 2007. (Pubitemid 46652345)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.5 , pp. 1469-1482
    • Zhong, P.1    Wang, R.2
  • 50
    • 33646456481 scopus 로고    scopus 로고
    • Support vector random fields for spatial classification
    • C. H. Lee, R. Greiner, and M. Schmidt, "Support vector random fields for spatial classification," in Proc. Conf. PKDD, 2005, pp. 121-132.
    • (2005) Proc. Conf. PKDD , pp. 121-132
    • Lee, C.H.1    Greiner, R.2    Schmidt, M.3
  • 51
    • 84899024607 scopus 로고    scopus 로고
    • Contextual models for object detection using boosted random fields
    • A. Torralba, K. Murphy, and W. Freeman, "Contextual models for object detection using boosted random fields," in Proc. Conf. Adv. NIPS 17, 2005, vol. 2, pp. 1401-1408.
    • (2005) Proc. Conf. Adv. NIPS 17 , vol.2 , pp. 1401-1408
    • Torralba, A.1    Murphy, K.2    Freeman, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.