-
1
-
-
84971957489
-
Continuation and path following
-
Jan.
-
E. L. Allgower and K. Georg, "Continuation and path following," Acta Numerica, vol.2, pp. 1-64, Jan. 1993.
-
(1993)
Acta Numerica
, vol.2
, pp. 1-64
-
-
Allgower, E.L.1
Georg, K.2
-
2
-
-
33747350759
-
Considering cost asymmetry in learning classifiers
-
Aug.
-
F. Bach, D. Heckerman, and E. Horvitz, "Considering cost asymmetry in learning classifiers," J. Mach. Learning Res., vol.7, pp. 1713-1741, Aug. 2006.
-
(2006)
J. Mach. Learning Res
, vol.7
, pp. 1713-1741
-
-
Bach, F.1
Heckerman, D.2
Horvitz, E.3
-
3
-
-
42249094907
-
Support vector machine solvers
-
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds. Cambridge, MA: MIT Press
-
L. Bottou and C.-J. Lin, "Support vector machine solvers," in Large Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds. Cambridge, MA: MIT Press, 2007, pp. 301-320.
-
(2007)
Large Scale Kernel Machines
, pp. 301-320
-
-
Bottou, L.1
Lin, C.-J.2
-
4
-
-
80052866161
-
Incremental and decremental support vector machine learning
-
Cambridge, MA: MIT Press, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds
-
G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in Advances in Neural Information Processing Systems (NIPS 2000), T. K. Leen, T. G. Dietterich, and V. Tresp, Eds., vol.13. Cambridge, MA: MIT Press, 2001, pp. 409-415.
-
(2001)
Advances in Neural Information Processing Systems (NIPS 2000)
, vol.13
, pp. 409-415
-
-
Cauwenberghs, G.1
Poggio, T.2
-
6
-
-
9244240793
-
Load forecasting using support vector machines: A study on eunite competition 2001
-
Nov.
-
B.-J. Chen, M.-W. Chang, and C.-J. Lin, "Load forecasting using support vector machines: A study on eunite competition 2001," IEEE Trans. Power Syst., vol.19, no.4, pp. 1821-1830, Nov. 2004.
-
(2004)
IEEE Trans. Power Syst
, vol.19
, Issue.4
, pp. 1821-1830
-
-
Chen, B.-J.1
Chang, M.-W.2
Lin, C.-J.3
-
10
-
-
34249726632
-
Efficient computation and model selection for the support vector regression
-
L. Gunter and J. Zhu, "Efficient computation and model selection for the support vector regression," Neural Comput., vol.19, no.6, pp. 1633-1655, 2007.
-
(2007)
Neural Comput
, vol.19
, Issue.6
, pp. 1633-1655
-
-
Gunter, L.1
Zhu, J.2
-
11
-
-
84925605946
-
The entire regularization path for the support vector machine
-
Oct.
-
T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, "The entire regularization path for the support vector machine," J. Mach. Learning Res., vol.5, pp. 1391-1415, Oct. 2004.
-
(2004)
J. Mach. Learning Res
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
13
-
-
70450206749
-
Efficient leave-m-out cross-validation of support vector regression by generalizing decremental algorithm
-
M. Karasuyama, I. Takeuchi, and R. Nakano, "Efficient leave-m-out cross-validation of support vector regression by generalizing decremental algorithm," New Generation Comput., vol.27, no.4, pp. 307-318, 2009.
-
(2009)
New Generation Comput
, vol.27
, Issue.4
, pp. 307-318
-
-
Karasuyama, M.1
Takeuchi, I.2
Nakano, R.3
-
14
-
-
0242351905
-
Financial time series forecasting using support vector machines
-
K.-J. Kim, "Financial time series forecasting using support vector machines," Neurocomputing, vol.55, nos. 1-2, pp. 307-319, 2003.
-
(2003)
Neurocomputing
, vol.55
, Issue.1-2
, pp. 307-319
-
-
Kim, K.-J.1
-
15
-
-
33745777639
-
Incremental support vector learning: Analysis, implementation and applications
-
Dec.
-
P. Laskov, C. Gehl, S. Kruger, and K.-R. Muller, "Incremental support vector learning: Analysis, implementation and applications," J. Mach. Learning Res., vol.7, pp. 1909-1936, Dec. 2006.
-
(2006)
J. Mach. Learning Res
, vol.7
, pp. 1909-1936
-
-
Laskov, P.1
Gehl, C.2
Kruger, S.3
Muller, K.-R.4
-
16
-
-
2542639357
-
An efficient method for computing leave-one-out error in support vector machines
-
May
-
M. M. Lee, S. S. Keerthi, C. J. Ong, and D. DeCoste, "An efficient method for computing leave-one-out error in support vector machines," IEEE Trans. Neural Netw., vol.15, no.3, pp. 750-757, May 2004.
-
(2004)
IEEE Trans. Neural Netw
, vol.15
, Issue.3
, pp. 750-757
-
-
Lee, M.M.1
Keerthi, S.S.2
Ong, C.J.3
Decoste, D.4
-
17
-
-
0141765796
-
Accurate online support vector regression
-
J. Ma and J. Theiler, "Accurate online support vector regression," Neural Comput., vol.15, no.11, pp. 2683-2703, 2003.
-
(2003)
Neural Comput
, vol.15
, Issue.11
, pp. 2683-2703
-
-
Ma, J.1
Theiler, J.2
-
18
-
-
0141556297
-
-
Software Dept., Univ. Politecnica Catalunya, Barcelona, Spain, Tech. Rep. LSI-02-11-R
-
M. Martin, "On-line support vector machines for function approximation," Software Dept., Univ. Politecnica Catalunya, Barcelona, Spain, Tech. Rep. LSI-02-11-R, 2002.
-
(2002)
On-line Support Vector Machines for Function Approximation
-
-
Martin, M.1
-
19
-
-
10344252975
-
-
[Online]. Available:
-
M. Meyer, "Statlib" [Online]. Available: http://lib.stat.cmu. edu/index. php
-
Statlib
-
-
Meyer, M.1
-
20
-
-
0003219590
-
Using support vector machines for time series prediction
-
Cambridge, MA: MIT Press
-
K.-R. Müller, A. J. Smola, G. Rätsch, B. Schökopf, J. Kohlmorgen, and V. Vapnik, "Using support vector machines for time series prediction," in Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 243-253.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 243-253
-
-
Müller, K.-R.1
Smola, A.J.2
Rätsch, G.3
Schökopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
22
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press
-
J. C. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods: Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999, pp. 185-208.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
23
-
-
33745798002
-
An efficient implementation of an active set method for SVMs
-
Dec.
-
K. Scheinberg, "An efficient implementation of an active set method for SVMs," J. Mach. Learning Res., vol.7, pp. 2237-2257, Dec. 2006.
-
(2006)
J. Mach. Learning Res
, vol.7
, pp. 2237-2257
-
-
Scheinberg, K.1
-
25
-
-
13844281522
-
Incremental training of support vector machines
-
Jan.
-
A. Shilton, M. Palaniswami, D. Ralph, and A. Tsoi, "Incremental training of support vector machines," IEEE Trans. Neural Netw., vol.16, no.1, pp. 114-131, Jan. 2005.
-
(2005)
IEEE Trans. Neural Netw
, vol.16
, Issue.1
, pp. 114-131
-
-
Shilton, A.1
Palaniswami, M.2
Ralph, D.3
Tsoi, A.4
-
26
-
-
67650329813
-
Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression
-
I. Takeuchi, K. Nomura, and T. Kanamori, "Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression," Neural Comput., vol.21, no.2, pp. 533-559, 2009.
-
(2009)
Neural Comput
, vol.21
, Issue.2
, pp. 533-559
-
-
Takeuchi, I.1
Nomura, K.2
Kanamori, T.3
-
27
-
-
0001023715
-
Application of support vector machines in financial time series forecasting
-
F. Tay and L. Cao, "Application of support vector machines in financial time series forecasting," Omega, vol.29, no.4, pp. 309-317, 2001.
-
(2001)
Omega
, vol.29
, Issue.4
, pp. 309-317
-
-
Tay, F.1
Cao, L.2
-
29
-
-
1942516515
-
Simple SVM
-
S. Vishwanathan, A. Smola, and M. Murty, "Simple SVM," in Proc. 20th Int. Conf. Mach. Learning (ICML), 2003, pp. 760-767.
-
(2003)
Proc. 20th Int. Conf. Mach. Learning (ICML)
, pp. 760-767
-
-
Vishwanathan, S.1
Smola, A.2
Murty, M.3
-
30
-
-
54349106864
-
A new solution path algorithm in support vector regression
-
Oct.
-
G. Wang, D.-Y. Yeung, and F. H. Lochovsky, "A new solution path algorithm in support vector regression," IEEE Trans. Neural Netw., vol.19, no.10, pp. 1753-1767, Oct. 2008.
-
(2008)
IEEE Trans. Neural Netw
, vol.19
, Issue.10
, pp. 1753-1767
-
-
Wang, G.1
Yeung, D.-Y.2
Lochovsky, F.H.3
|