메뉴 건너뛰기




Volumn 21, Issue 7, 2010, Pages 1048-1059

Multiple incremental decremental learning of support vector machines

Author keywords

Incremental decremental algorithm; path following; support vector machines (SVM)

Indexed keywords

COMPUTATIONAL COSTS; DATA POINTS; DECREMENTAL ALGORITHMS; MULTIPLE DATA; ONLINE LEARNING; PATH FOLLOWING;

EID: 77954563782     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2048039     Document Type: Article
Times cited : (107)

References (30)
  • 1
    • 84971957489 scopus 로고
    • Continuation and path following
    • Jan.
    • E. L. Allgower and K. Georg, "Continuation and path following," Acta Numerica, vol.2, pp. 1-64, Jan. 1993.
    • (1993) Acta Numerica , vol.2 , pp. 1-64
    • Allgower, E.L.1    Georg, K.2
  • 2
    • 33747350759 scopus 로고    scopus 로고
    • Considering cost asymmetry in learning classifiers
    • Aug.
    • F. Bach, D. Heckerman, and E. Horvitz, "Considering cost asymmetry in learning classifiers," J. Mach. Learning Res., vol.7, pp. 1713-1741, Aug. 2006.
    • (2006) J. Mach. Learning Res , vol.7 , pp. 1713-1741
    • Bach, F.1    Heckerman, D.2    Horvitz, E.3
  • 3
    • 42249094907 scopus 로고    scopus 로고
    • Support vector machine solvers
    • L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds. Cambridge, MA: MIT Press
    • L. Bottou and C.-J. Lin, "Support vector machine solvers," in Large Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds. Cambridge, MA: MIT Press, 2007, pp. 301-320.
    • (2007) Large Scale Kernel Machines , pp. 301-320
    • Bottou, L.1    Lin, C.-J.2
  • 4
    • 80052866161 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • Cambridge, MA: MIT Press, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds
    • G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in Advances in Neural Information Processing Systems (NIPS 2000), T. K. Leen, T. G. Dietterich, and V. Tresp, Eds., vol.13. Cambridge, MA: MIT Press, 2001, pp. 409-415.
    • (2001) Advances in Neural Information Processing Systems (NIPS 2000) , vol.13 , pp. 409-415
    • Cauwenberghs, G.1    Poggio, T.2
  • 6
    • 9244240793 scopus 로고    scopus 로고
    • Load forecasting using support vector machines: A study on eunite competition 2001
    • Nov.
    • B.-J. Chen, M.-W. Chang, and C.-J. Lin, "Load forecasting using support vector machines: A study on eunite competition 2001," IEEE Trans. Power Syst., vol.19, no.4, pp. 1821-1830, Nov. 2004.
    • (2004) IEEE Trans. Power Syst , vol.19 , Issue.4 , pp. 1821-1830
    • Chen, B.-J.1    Chang, M.-W.2    Lin, C.-J.3
  • 10
    • 34249726632 scopus 로고    scopus 로고
    • Efficient computation and model selection for the support vector regression
    • L. Gunter and J. Zhu, "Efficient computation and model selection for the support vector regression," Neural Comput., vol.19, no.6, pp. 1633-1655, 2007.
    • (2007) Neural Comput , vol.19 , Issue.6 , pp. 1633-1655
    • Gunter, L.1    Zhu, J.2
  • 11
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • Oct.
    • T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, "The entire regularization path for the support vector machine," J. Mach. Learning Res., vol.5, pp. 1391-1415, Oct. 2004.
    • (2004) J. Mach. Learning Res , vol.5 , pp. 1391-1415
    • Hastie, T.1    Rosset, S.2    Tibshirani, R.3    Zhu, J.4
  • 13
    • 70450206749 scopus 로고    scopus 로고
    • Efficient leave-m-out cross-validation of support vector regression by generalizing decremental algorithm
    • M. Karasuyama, I. Takeuchi, and R. Nakano, "Efficient leave-m-out cross-validation of support vector regression by generalizing decremental algorithm," New Generation Comput., vol.27, no.4, pp. 307-318, 2009.
    • (2009) New Generation Comput , vol.27 , Issue.4 , pp. 307-318
    • Karasuyama, M.1    Takeuchi, I.2    Nakano, R.3
  • 14
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • K.-J. Kim, "Financial time series forecasting using support vector machines," Neurocomputing, vol.55, nos. 1-2, pp. 307-319, 2003.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 307-319
    • Kim, K.-J.1
  • 15
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: Analysis, implementation and applications
    • Dec.
    • P. Laskov, C. Gehl, S. Kruger, and K.-R. Muller, "Incremental support vector learning: Analysis, implementation and applications," J. Mach. Learning Res., vol.7, pp. 1909-1936, Dec. 2006.
    • (2006) J. Mach. Learning Res , vol.7 , pp. 1909-1936
    • Laskov, P.1    Gehl, C.2    Kruger, S.3    Muller, K.-R.4
  • 16
    • 2542639357 scopus 로고    scopus 로고
    • An efficient method for computing leave-one-out error in support vector machines
    • May
    • M. M. Lee, S. S. Keerthi, C. J. Ong, and D. DeCoste, "An efficient method for computing leave-one-out error in support vector machines," IEEE Trans. Neural Netw., vol.15, no.3, pp. 750-757, May 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.3 , pp. 750-757
    • Lee, M.M.1    Keerthi, S.S.2    Ong, C.J.3    Decoste, D.4
  • 17
    • 0141765796 scopus 로고    scopus 로고
    • Accurate online support vector regression
    • J. Ma and J. Theiler, "Accurate online support vector regression," Neural Comput., vol.15, no.11, pp. 2683-2703, 2003.
    • (2003) Neural Comput , vol.15 , Issue.11 , pp. 2683-2703
    • Ma, J.1    Theiler, J.2
  • 19
    • 10344252975 scopus 로고    scopus 로고
    • [Online]. Available:
    • M. Meyer, "Statlib" [Online]. Available: http://lib.stat.cmu. edu/index. php
    • Statlib
    • Meyer, M.1
  • 22
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press
    • J. C. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods: Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 23
    • 33745798002 scopus 로고    scopus 로고
    • An efficient implementation of an active set method for SVMs
    • Dec.
    • K. Scheinberg, "An efficient implementation of an active set method for SVMs," J. Mach. Learning Res., vol.7, pp. 2237-2257, Dec. 2006.
    • (2006) J. Mach. Learning Res , vol.7 , pp. 2237-2257
    • Scheinberg, K.1
  • 25
    • 13844281522 scopus 로고    scopus 로고
    • Incremental training of support vector machines
    • Jan.
    • A. Shilton, M. Palaniswami, D. Ralph, and A. Tsoi, "Incremental training of support vector machines," IEEE Trans. Neural Netw., vol.16, no.1, pp. 114-131, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.1 , pp. 114-131
    • Shilton, A.1    Palaniswami, M.2    Ralph, D.3    Tsoi, A.4
  • 26
    • 67650329813 scopus 로고    scopus 로고
    • Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression
    • I. Takeuchi, K. Nomura, and T. Kanamori, "Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression," Neural Comput., vol.21, no.2, pp. 533-559, 2009.
    • (2009) Neural Comput , vol.21 , Issue.2 , pp. 533-559
    • Takeuchi, I.1    Nomura, K.2    Kanamori, T.3
  • 27
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • F. Tay and L. Cao, "Application of support vector machines in financial time series forecasting," Omega, vol.29, no.4, pp. 309-317, 2001.
    • (2001) Omega , vol.29 , Issue.4 , pp. 309-317
    • Tay, F.1    Cao, L.2
  • 30
    • 54349106864 scopus 로고    scopus 로고
    • A new solution path algorithm in support vector regression
    • Oct.
    • G. Wang, D.-Y. Yeung, and F. H. Lochovsky, "A new solution path algorithm in support vector regression," IEEE Trans. Neural Netw., vol.19, no.10, pp. 1753-1767, Oct. 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.10 , pp. 1753-1767
    • Wang, G.1    Yeung, D.-Y.2    Lochovsky, F.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.