메뉴 건너뛰기




Volumn 52, Issue , 2010, Pages

Novel numerical methods for time-space fractional reaction diffusion equations in two dimensions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84865609778     PISSN: 14461811     EISSN: 14468735     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (13)
  • 2
    • 0036556364 scopus 로고    scopus 로고
    • On the accuracy of theffinite volume element method based on piecewise linear polynomials
    • doi:10.1137/S0036142900368873 C399, C400, C405
    • R. E. Ewing, T. Lin and Y. Lin. On the accuracy of theffinite volume element method based on piecewise linear polynomials. SIAM J. Numerical Analysis 39(6):1865-1888, 2002. doi:10.1137/S0036142900368873 C399, C400, C405
    • (2002) SIAM J. Numerical Analysis , vol.39 , Issue.6 , pp. 1865-1888
    • Ewing, R.E.1    Lin, T.2    Lin, Y.3
  • 3
    • 64249104309 scopus 로고    scopus 로고
    • Numerical approximation of a fractional-in-space diffusion equation (ii)|with nonhomogeneous boundary conditions
    • C397, C400, C401
    • M. Iliffic, F. Liu, I. Turner, and V. Anh. Numerical approximation of a fractional-in-space diffusion equation (II)|with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal., 9:333-349, 2006. http://hdl.handle.net/ 10525/1287 C397, C400, C401
    • (2006) Fract. Calc. Appl. Anal , vol.9 , pp. 333-349
    • Iliffic, M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 5
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • doi:10.1016/j.jcp.2007.02.001 C401
    • Y. Lin and C. Xu. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comp. Phys., 225:1533-1552, 2007. doi:10.1016/j.jcp.2007.02.001 C401
    • (2007) J. Comp. Phys , vol.225 , pp. 1533-1552
    • Lin, Y.1    Xu, C.2
  • 7
    • 0026818185 scopus 로고
    • Analysis of some krylov subspace approximations to the matrix exponential operator
    • doi:10.1137/0729014 C402
    • Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal., 29:209-228, 1992. doi:10.1137/0729014 C402
    • (1992) SIAM J. Numer. Anal , vol.29 , pp. 209-228
    • Saad, Y.1
  • 9
    • 33846787171 scopus 로고    scopus 로고
    • Recent computational developments in krylov subspace methods for linear systems
    • doi:10.1002/nla.499 C398
    • V. Simoncini and D. B. Szyld. Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Algebra Appl., 14:1-59, 2007. doi:10.1002/nla.499 C398
    • (2007) Numer. Linear Algebra Appl , vol.14 , Issue.1 , pp. 59
    • Simoncini, V.1    Szyld, D.B.2
  • 10
    • 0001646445 scopus 로고
    • An iterative solution method for solving f(a)x = b using krylov subspace information obtained for the symmetric positive deffinite matrix a
    • doi:10.1016/0377-0427(87)90020-3 C402
    • H. A. van der Vorst. An iterative solution method for solving f(A)x = b using Krylov subspace information obtained for the symmetric positive deffinite matrix A. J. Comput. Appl. Math., 18:249-263, 1987. doi:10.1016/0377-0427(87) 90020-3 C402
    • (1987) J. Comput. Appl. Math , vol.18 , pp. 249-263
    • Van Der Vorst, H.A.1
  • 11
    • 84870870930 scopus 로고    scopus 로고
    • Stability and convergence of an effiective numerical method for the time-space fractional fokker-planck equation with a nonlinear source term
    • 464321 doi:10.1155/2010/464321 C401
    • Q. Yang, F. Liu, and I. Turner. Stability and convergence of an effiective numerical method for the time-space fractional Fokker-Planck equation with a nonlinear source term. International Journal of Differential Equations, Article ID 464321, 22 pages, 2010. doi:10.1155/2010/464321 C401
    • (2010) International Journal of Differential Equations, Article ID , pp. 22
    • Yang, Q.1    Liu, F.2    Turner, I.3
  • 12
    • 69249214155 scopus 로고    scopus 로고
    • Numerical methods for fractional partial differential equations with riesz space fractional derivatives
    • doi:10.1016/j.apm.2009.04.006 C397
    • Q. Yang, F. Liu, and I. Turner. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Applied Mathematical Modelling, 34:200-218, 2010. doi:10.1016/j.apm.2009.04.006 C397
    • (2010) Applied Mathematical Modelling , vol.34 , pp. 200-218
    • Yang, Q.1    Liu, F.2    Turner, I.3
  • 13
    • 79960431454 scopus 로고    scopus 로고
    • Novel numerical methods for solving the time-space fractional diffusion equation in 2d
    • doi:10.1137/100800634 C397, C398, C404
    • Q. Yang, I. Turner, F. Liu, and M. Iliffic. Novel numerical methods for solving the time-space fractional diffusion equation in 2D. SIAM J. Scientific Computing, 33:1159-1180, 2011. doi:10.1137/100800634 C397, C398, C404
    • (2011) SIAM J. Scientific Computing , vol.33 , pp. 1159-1180
    • Yang, Q.1    Turner, I.2    Liu, F.3    Iliffic, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.