-
2
-
-
0036556364
-
On the accuracy of theffinite volume element method based on piecewise linear polynomials
-
doi:10.1137/S0036142900368873 C399, C400, C405
-
R. E. Ewing, T. Lin and Y. Lin. On the accuracy of theffinite volume element method based on piecewise linear polynomials. SIAM J. Numerical Analysis 39(6):1865-1888, 2002. doi:10.1137/S0036142900368873 C399, C400, C405
-
(2002)
SIAM J. Numerical Analysis
, vol.39
, Issue.6
, pp. 1865-1888
-
-
Ewing, R.E.1
Lin, T.2
Lin, Y.3
-
3
-
-
64249104309
-
Numerical approximation of a fractional-in-space diffusion equation (ii)|with nonhomogeneous boundary conditions
-
C397, C400, C401
-
M. Iliffic, F. Liu, I. Turner, and V. Anh. Numerical approximation of a fractional-in-space diffusion equation (II)|with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal., 9:333-349, 2006. http://hdl.handle.net/ 10525/1287 C397, C400, C401
-
(2006)
Fract. Calc. Appl. Anal
, vol.9
, pp. 333-349
-
-
Iliffic, M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
5
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
doi:10.1016/j.jcp.2007.02.001 C401
-
Y. Lin and C. Xu. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comp. Phys., 225:1533-1552, 2007. doi:10.1016/j.jcp.2007.02.001 C401
-
(2007)
J. Comp. Phys
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
7
-
-
0026818185
-
Analysis of some krylov subspace approximations to the matrix exponential operator
-
doi:10.1137/0729014 C402
-
Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal., 29:209-228, 1992. doi:10.1137/0729014 C402
-
(1992)
SIAM J. Numer. Anal
, vol.29
, pp. 209-228
-
-
Saad, Y.1
-
9
-
-
33846787171
-
Recent computational developments in krylov subspace methods for linear systems
-
doi:10.1002/nla.499 C398
-
V. Simoncini and D. B. Szyld. Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Algebra Appl., 14:1-59, 2007. doi:10.1002/nla.499 C398
-
(2007)
Numer. Linear Algebra Appl
, vol.14
, Issue.1
, pp. 59
-
-
Simoncini, V.1
Szyld, D.B.2
-
10
-
-
0001646445
-
An iterative solution method for solving f(a)x = b using krylov subspace information obtained for the symmetric positive deffinite matrix a
-
doi:10.1016/0377-0427(87)90020-3 C402
-
H. A. van der Vorst. An iterative solution method for solving f(A)x = b using Krylov subspace information obtained for the symmetric positive deffinite matrix A. J. Comput. Appl. Math., 18:249-263, 1987. doi:10.1016/0377-0427(87) 90020-3 C402
-
(1987)
J. Comput. Appl. Math
, vol.18
, pp. 249-263
-
-
Van Der Vorst, H.A.1
-
11
-
-
84870870930
-
Stability and convergence of an effiective numerical method for the time-space fractional fokker-planck equation with a nonlinear source term
-
464321 doi:10.1155/2010/464321 C401
-
Q. Yang, F. Liu, and I. Turner. Stability and convergence of an effiective numerical method for the time-space fractional Fokker-Planck equation with a nonlinear source term. International Journal of Differential Equations, Article ID 464321, 22 pages, 2010. doi:10.1155/2010/464321 C401
-
(2010)
International Journal of Differential Equations, Article ID
, pp. 22
-
-
Yang, Q.1
Liu, F.2
Turner, I.3
-
12
-
-
69249214155
-
Numerical methods for fractional partial differential equations with riesz space fractional derivatives
-
doi:10.1016/j.apm.2009.04.006 C397
-
Q. Yang, F. Liu, and I. Turner. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Applied Mathematical Modelling, 34:200-218, 2010. doi:10.1016/j.apm.2009.04.006 C397
-
(2010)
Applied Mathematical Modelling
, vol.34
, pp. 200-218
-
-
Yang, Q.1
Liu, F.2
Turner, I.3
-
13
-
-
79960431454
-
Novel numerical methods for solving the time-space fractional diffusion equation in 2d
-
doi:10.1137/100800634 C397, C398, C404
-
Q. Yang, I. Turner, F. Liu, and M. Iliffic. Novel numerical methods for solving the time-space fractional diffusion equation in 2D. SIAM J. Scientific Computing, 33:1159-1180, 2011. doi:10.1137/100800634 C397, C398, C404
-
(2011)
SIAM J. Scientific Computing
, vol.33
, pp. 1159-1180
-
-
Yang, Q.1
Turner, I.2
Liu, F.3
Iliffic, M.4
|