메뉴 건너뛰기




Volumn 148, Issue , 2006, Pages 1001-1008

Totally corrective boosting algorithms that maximize the margin

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL METHODS; ERROR CORRECTION; ITERATIVE METHODS; LEARNING SYSTEMS;

EID: 34250707319     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1143844.1143970     Document Type: Conference Paper
Times cited : (68)

References (20)
  • 1
    • 0002429764 scopus 로고    scopus 로고
    • A column generation algorithm for boosting
    • Morgan Kaufmann
    • Bennett, K., Demiriz, A., & Shawe-Taylor, J. (2000). A column generation algorithm for boosting. Proc. ICML (pp. 65-72). Morgan Kaufmann.
    • (2000) Proc. ICML , pp. 65-72
    • Bennett, K.1    Demiriz, A.2    Shawe-Taylor, J.3
  • 2
    • 49949144765 scopus 로고
    • The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming
    • Bregman, L. (1967). The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Math. and Math. Physics, 7, 200-127.
    • (1967) USSR Computational Math. and Math. Physics , vol.7 , pp. 200-127
    • Bregman, L.1
  • 3
    • 0003929807 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • 504, Statistics Department, University of California at Berkeley
    • Breiman, L. (1997). Prediction games and arcing algorithmsTechnical Report 504). Statistics Department, University of California at Berkeley.
    • (1997) Technical Report
    • Breiman, L.1
  • 4
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computation, 11, 1493-1518.
    • (1999) Neural Computation , vol.11 , pp. 1493-1518
    • Breiman, L.1
  • 5
    • 84898984337 scopus 로고    scopus 로고
    • Potential boosters?
    • Duffy, N., & Helmbold, D. (2000). Potential boosters? NIPS'00 (pp. 258-264).
    • (2000) NIPS'00 , pp. 258-264
    • Duffy, N.1    Helmbold, D.2
  • 6
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. of Comp. & Sys. Sci., 55, 119-139.
    • (1997) J. of Comp. & Sys. Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 7
    • 0034164230 scopus 로고    scopus 로고
    • Additive Logistic Regression: A statistical view of boosting
    • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive Logistic Regression: a statistical view of boosting. Annals of Statistics, 2, 337-374.
    • (2000) Annals of Statistics , vol.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 9
    • 0042496213 scopus 로고    scopus 로고
    • Tracking the best linear prediction
    • Herbster, M., & Warmuth, M. (2001). Tracking the best linear prediction. J. Mach. Learn. Res., 281-309.
    • (2001) J. Mach. Learn. Res , pp. 281-309
    • Herbster, M.1    Warmuth, M.2
  • 10
    • 0033280350 scopus 로고    scopus 로고
    • Boosting as entropy projection
    • Kivinen, J., & Warmuth, M. (1999). Boosting as entropy projection. COLT'99.
    • (1999) COLT'99
    • Kivinen, J.1    Warmuth, M.2
  • 11
    • 0033280975 scopus 로고    scopus 로고
    • Additive models, boosting, and inference for generalized divergences
    • Lafferty, J. (1999). Additive models, boosting, and inference for generalized divergences. COLT'99 (pp. 125-133).
    • (1999) COLT'99 , pp. 125-133
    • Lafferty, J.1
  • 12
    • 34250091945 scopus 로고
    • Learning when irrelevant attributes abound: A new linear-threshold algorithm
    • Littlestone, N. (1988). Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2, 285-318.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 13
    • 84898960254 scopus 로고    scopus 로고
    • Mistake bounds for maximum entropy discrimination
    • Long, P. M., & Wu, X. (2005). Mistake bounds for maximum entropy discrimination. NIPS'04 (pp. 833-840).
    • (2005) NIPS'04 , pp. 833-840
    • Long, P.M.1    Wu, X.2
  • 16
    • 21844445229 scopus 로고    scopus 로고
    • Efficient margin maximizing with boosting
    • Rätsch, G., & Warmuth, M. K. (2005). Efficient margin maximizing with boosting. J. Mach. Learn. Res., 2131-2152.
    • (2005) J. Mach. Learn. Res , pp. 2131-2152
    • Rätsch, G.1    Warmuth, M.K.2
  • 17
    • 47849088969 scopus 로고    scopus 로고
    • Dynamics of AdaBoost: Cyclic behavior and convergence of margins
    • Rudin, C., Daubechies, I., & Schapire, R. (2004a). Dynamics of AdaBoost: Cyclic behavior and convergence of margins. J. Mach. Learn. Res., 1557-1595.
    • (2004) J. Mach. Learn. Res , pp. 1557-1595
    • Rudin, C.1    Daubechies, I.2    Schapire, R.3
  • 18
    • 26944467804 scopus 로고    scopus 로고
    • Analysis of boosting algoritms using the smooth margin function: A study of three algorithms
    • Unpublished manuscript
    • Rudin, C., Schapire, R., & Daubechies, I. (2004b). Analysis of boosting algoritms using the smooth margin function: A study of three algorithms. Unpublished manuscript.
    • (2004)
    • Rudin, C.1    Schapire, R.2    Daubechies, I.3
  • 19
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R., Freund, Y., Bartlett, P., & Lee, W. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26, 1651-1686.
    • (1998) The Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Bartlett, P.3    Lee, W.4
  • 20
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37, 297-336.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.1    Singer, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.