메뉴 건너뛰기




Volumn 106, Issue 496, 2011, Pages 1259-1279

Predicting viral infection from high-dimensional biomarker trajectories

Author keywords

Bayesian nonparametrics; Dynamic factor analysis; High dimensional; Infectious disease; Joint model; Multidimensional longitudinal data; Multivariate functional data; Predictive model

Indexed keywords


EID: 84862961816     PISSN: 01621459     EISSN: None     Source Type: Journal    
DOI: 10.1198/jasa.2011.ap10611     Document Type: Article
Times cited : (23)

References (39)
  • 1
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing Time Series Gene Expression Data
    • 1259,1263
    • Bar-Joseph, Z. (2004), "Analyzing Time Series Gene Expression Data," Bioinformatics, 20, 2493-2503. [1259,1263]
    • (2004) Bioinformatics , vol.20 , pp. 2493-2503
    • Bar-Joseph, Z.1
  • 4
    • 0034911695 scopus 로고    scopus 로고
    • Comparison of Pathogenesis and Host Immune Responses to Candida glabrata and Candida albicans in Systemically Infected Immunocompetent Mice
    • 1266
    • Brieland, J., Essig, D., Jackson, C., Frank, D., Loebenberg, D., Menzel, F., Arnold, B., DiDomenico, B., and Hare, R. (2001), "Comparison of Pathogenesis and Host Immune Responses to Candida glabrata and Candida albicans in Systemically Infected Immunocompetent Mice," Infection and Immunity, 69, 5046-5055. [1266]
    • (2001) Infection and Immunity , vol.69 , pp. 5046-5055
    • Brieland, J.1    Essig, D.2    Jackson, C.3    Frank, D.4    Loebenberg, D.5    Menzel, F.6    Arnold, B.7    Didomenico, B.8    Hare, R.9
  • 6
    • 0036971505 scopus 로고    scopus 로고
    • Bayesian Modeling of Incidence and Progression of Disease From Cross-Sectional Data
    • 1261
    • Dunson, D., and Baird, D. (2002), "Bayesian Modeling of Incidence and Progression of Disease From Cross-Sectional Data," Biometrics, 58, 813-822.[1261]
    • (2002) Biometrics , vol.58 , pp. 813-822
    • Dunson, D.1    Baird, D.2
  • 7
    • 4444334824 scopus 로고    scopus 로고
    • Bayesian Modeling of Multiple Lesion Onset and Growth From Interval-Censored Data
    • 1261
    • Dunson, D., Holloman, C., Calder, C., and Gunn, L. (2004), "Bayesian Modeling of Multiple Lesion Onset and Growth From Interval-Censored Data," Biometrics, 60, 676-683. [1261]
    • (2004) Biometrics , vol.60 , pp. 676-683
    • Dunson, D.1    Holloman, C.2    Calder, C.3    Gunn, L.4
  • 8
    • 0001120413 scopus 로고
    • A Bayesian Analysis of Some Nonparametric Problems
    • 1276
    • Ferguson, T. (1973), "A Bayesian Analysis of Some Nonparametric Problems," The Annals of Statistics, 1, 209-230. [1276]
    • (1973) The Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.1
  • 10
    • 33645507298 scopus 로고    scopus 로고
    • A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes: An Application of Bayesian Hierarchical Clustering of Curves
    • 1263
    • Heard, N., Holmes, C., and Stephens, D. (2006), "A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes: An Application of Bayesian Hierarchical Clustering of Curves," Journal of the American Statistical Association, 101, 18-29. [1263]
    • (2006) Journal of the American Statistical Association , vol.101 , pp. 18-29
    • Heard, N.1    Holmes, C.2    Stephens, D.3
  • 13
    • 58549112996 scopus 로고    scopus 로고
    • Bioinformatics Enrichment Tools: Paths Toward the Comprehensive Functional Analysis of Large Gene Lists
    • 1274
    • Huang, D., Sherman, B., and Lempicki, R. (2009), "Bioinformatics Enrichment Tools: Paths Toward the Comprehensive Functional Analysis of Large Gene Lists," Nucleic Acids Research, 37, 1-13. [1274]
    • (2009) Nucleic Acids Research , vol.37 , pp. 1-13
    • Huang, D.1    Sherman, B.2    Lempicki, R.3
  • 14
    • 60549112774 scopus 로고    scopus 로고
    • Inflammasome Recognition of Influenza Virus Is Essential for Adaptive Immune Responses
    • 1274
    • Ichinohe, T., Lee, H., Ogura, Y., Flavell, R., and Iwasaki, A. (2009), "Inflammasome Recognition of Influenza Virus Is Essential for Adaptive Immune Responses," Journal of Experimental Medicine, 206, 79-87. [1274]
    • (2009) Journal of Experimental Medicine , vol.206 , pp. 79-87
    • Ichinohe, T.1    Lee, H.2    Ogura, Y.3    Flavell, R.4    Iwasaki, A.5
  • 15
    • 0035535702 scopus 로고    scopus 로고
    • Functional Linear Discriminant Analysis for Irregularly Sampled Curves
    • 1259,1260,1263
    • James, G., and Hastie, T. (2001), "Functional Linear Discriminant Analysis for Irregularly Sampled Curves," Journal of the Royal Statistical Society, Ser. B, 63, 533-550. [1259,1260,1263]
    • (2001) Journal of the Royal Statistical Society, Ser. B , vol.63 , pp. 533-550
    • James, G.1    Hastie, T.2
  • 16
    • 15944395145 scopus 로고    scopus 로고
    • Insights Into Host Responses Against Pathogens From Transcriptional Profiling
    • 1274
    • Jenner, R., and Young, R. (2005), "Insights Into Host Responses Against Pathogens From Transcriptional Profiling," Nature Reviews Microbiology, 3, 281-294. [1274]
    • (2005) Nature Reviews Microbiology , vol.3 , pp. 281-294
    • Jenner, R.1    Young, R.2
  • 18
    • 77951941265 scopus 로고    scopus 로고
    • Estimating Replicate Time Shifts Using Gaussian Process Regression
    • 1259,1263
    • Liu, Q., Lin, K., Andersen, B., Smyth, P., and Ihler, A. (2010), "Estimating Replicate Time Shifts Using Gaussian Process Regression," Bioinformatics, 26, 770-776. [1259,1263]
    • (2010) Bioinformatics , vol.26 , pp. 770-776
    • Liu, Q.1    Lin, K.2    Andersen, B.3    Smyth, P.4    Ihler, A.5
  • 19
    • 1842539381 scopus 로고    scopus 로고
    • Bayesian Model Assessment in Factor Analysis
    • 1259
    • Lopes, H., and West, M. (2004), "Bayesian Model Assessment in Factor Analysis," Statistica Sinica, 14, 41-67. [1259]
    • (2004) Statistica Sinica , vol.14 , pp. 41-67
    • Lopes, H.1    West, M.2
  • 20
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of Time-Course Gene Expression Data Using a Mixed-Effects Model With B-Splines
    • 1263
    • Luan, Y., and Li, H. (2003), "Clustering of Time-Course Gene Expression Data Using a Mixed-Effects Model With B-Splines," Bioinformatics, 19, 474-482. [1263]
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 21
    • 33747890494 scopus 로고    scopus 로고
    • A Mixture Model With Random-Effects Components for Clustering Correlated Gene-Expression Profiles
    • 1263
    • Ng, S., McLachlan, G., Wang, K., Jones, L. N.-T., and Ng, S.-W. (2006), "A Mixture Model With Random-Effects Components for Clustering Correlated Gene-Expression Profiles," Bioinformatics, 22, 1745-1752. [1263]
    • (2006) Bioinformatics , vol.22 , pp. 1745-1752
    • Ng, S.1    McLachlan, G.2    Wang, K.3    Jones L., N.-T.4    Ng, S.-W.5
  • 22
    • 71149088102 scopus 로고    scopus 로고
    • in Proceedings of the International Conference on Machine Learning, Montreal, Canada: Omnipress. [1262
    • Paisley, J., and Carin, L. (2009), "Nonparametric Factor Analysis With Beta Process Priors," in Proceedings of the International Conference on Machine Learning, Montreal, Canada: Omnipress. [1262]
    • (2009) Nonparametric Factor Analysis With Beta Process Priors
    • Paisley, J.1    Carin, L.2
  • 23
    • 78650754831 scopus 로고    scopus 로고
    • Inflammasomes as Mediators of Immunity Against Influenza Virus
    • 1274
    • Pang, I., and Iwasaki, A. (2011), "Inflammasomes as Mediators of Immunity Against Influenza Virus," Trends in Immunology, 32, 34-41. [1274]
    • (2011) Trends In Immunology , vol.32 , pp. 34-41
    • Pang, I.1    Iwasaki, A.2
  • 27
    • 15244363491 scopus 로고    scopus 로고
    • The DNA Sequence of the Human X Chromosome
    • 1267
    • Ross, M. (2005), "The DNA Sequence of the Human X Chromosome," Nature, 434, 325-337. [1267]
    • (2005) Nature , vol.434 , pp. 325-337
    • Ross, M.1
  • 28
    • 77949514786 scopus 로고    scopus 로고
    • Mixtures of Regression Models for Time-Course Gene Expression Data: Evaluation of Initialization and Random Effects
    • 1263
    • Scharl, T., Grun, B., and Leisch, F. (2010), "Mixtures of Regression Models for Time-Course Gene Expression Data: Evaluation of Initialization and Random Effects," Bioinformatics, 26, 370-377. [1263]
    • (2010) Bioinformatics , vol.26 , pp. 370-377
    • Scharl, T.1    Grun, B.2    Leisch, F.3
  • 32
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • 1262,1264
    • Tipping, M. (2001), "Sparse Bayesian Learning and the Relevance Vector Machine," Journal of Machine Learning Research, 1, 211-244. [1262,1264]
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.1
  • 33
    • 0035576921 scopus 로고    scopus 로고
    • Ineffectiveness of Intranasal Zinc Gluconate for Prevention f Experimental Rhinovirus Colds
    • 1266
    • Turner, R. (2001), "Ineffectiveness of Intranasal Zinc Gluconate for Prevention f Experimental Rhinovirus Colds," Clinical Infections Diseases, 33, 1865-1870. [1266]
    • (2001) Clinical Infections Diseases , vol.33 , pp. 1865-1870
    • Turner, R.1
  • 34
    • 10744226630 scopus 로고    scopus 로고
    • Gender-Specific Gene Expression in Post-Mortem Human rain: Localization to Sex Chromosomes
    • 1267
    • Vawter, M. P. (2004), "Gender-Specific Gene Expression in Post-Mortem Human rain: Localization to Sex Chromosomes," Neuropsychopharmacology, 29, 373-384. [1267]
    • (2004) Neuropsychopharmacology , vol.29 , pp. 373-384
    • Vawter, M.P.1
  • 35
    • 34547840186 scopus 로고    scopus 로고
    • Group SCAD Regression Analysis or Microarray Time Course Gene Expression Data
    • 1263
    • Wang, L., Chen, G., and Li, H. (2007), "Group SCAD Regression Analysis or Microarray Time Course Gene Expression Data," Bioinformatics, 23, 1486-1494. [1263]
    • (2007) Bioinformatics , vol.23 , pp. 1486-1494
    • Wang, L.1    Chen, G.2    Li, H.3
  • 36
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian Factor Regression Models in the "Large p, Small n" Paradigm
    • eds. J. M. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith, and M. West, Cambridge, England: Oxford University Press, 1259,1262
    • West, M. (2003), "Bayesian Factor Regression Models in the "Large p, Small n" Paradigm," in Bayesian Statistics 7, eds. J. M. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith, and M. West, Cambridge, England: Oxford University Press, pp. 723-732. [1259,1262]
    • (2003) Bayesian Statistics 7 , pp. 723-732
    • West, M.1
  • 37
    • 70149096300 scopus 로고    scopus 로고
    • Penalized Matrix Decomposition, With Applications to Sparse Principal Components and Canonical Correlation Analysis
    • 1272,1275
    • Witten, D., Tibshirani, R., and Hastie, T. A. (2009), "Penalized Matrix Decomposition, With Applications to Sparse Principal Components and Canonical Correlation Analysis," Biostatistics, 10, 515-534. [1272,1275]
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.1    Tibshirani, R.2    Hastie, T.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.