메뉴 건너뛰기




Volumn 26, Issue 3, 2009, Pages 370-377

Mixtures of regression models for time course gene expression data: Evaluation of initialization and random effects

Author keywords

[No Author keywords available]

Indexed keywords

ESCHERICHIA COLI;

EID: 77949514786     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btp686     Document Type: Article
Times cited : (35)

References (22)
  • 1
    • 0041346457 scopus 로고    scopus 로고
    • Continuous representations of time series gene expression data
    • Bar-Joseph, Z. et al. (2003) Continuous representations of time series gene expression data. J. Comput. Biol., 10, 341-356.
    • (2003) J. Comput. Biol. , vol.10 , pp. 341-356
    • Bar-Joseph, Z.1
  • 2
    • 0037469122 scopus 로고    scopus 로고
    • Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models
    • Biernacki, C. et al. (2003) Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput. Stat. Data Anal., 41, 561-575.
    • (2003) Comput. Stat. Data Anal. , vol.41 , pp. 561-575
    • Biernacki, C.1
  • 3
    • 0001626339 scopus 로고
    • A classification EM algorithm and two stochastic versions
    • Celeux, G. and Govaert, G. (1992) A classification EM algorithm and two stochastic versions. Comput. Stat. Data Anal., 14, 315-332.
    • (1992) Comput. Stat. Data Anal. , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 4
    • 26844458204 scopus 로고    scopus 로고
    • Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments
    • Celeux, G. et al. (2005) Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments. Stat. Model., 5, 243-267.
    • (2005) Stat. Model. , vol.5 , pp. 243-267
    • Celeux, G.1
  • 5
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • Cho, R.J. et al. (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell, 2, 65-73.
    • (1998) Mol. Cell , vol.2 , pp. 65-73
    • Cho, R.J.1
  • 6
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EMalgorithm
    • Dempster, A.P. et al. (1977) Maximum likelihood from incomplete data via the EMalgorithm. J. R. Stat. Soc. Ser. B (Methodol.), 39, 1-38.
    • (1977) J. R. Stat. Soc. Ser. B (Methodol.) , vol.39 , pp. 1-38
    • Dempster, A.P.1
  • 7
    • 0002241603 scopus 로고    scopus 로고
    • Stochastic EM: method and application
    • Gilks, W. et al. (eds), Chapter 15, Chapman & Hall, London
    • Diebolt, J. and Ip, E. (1996) Stochastic EM: method and application. In Gilks, W. et al. (eds) Markov Chain Monte Carlo in Practice. Chapter 15, Chapman & Hall, London, pp. 259-273.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 259-273
    • Diebolt, J.1    Ip, E.2
  • 8
    • 26644457648 scopus 로고    scopus 로고
    • Incremental model-based clustering for large datasets with small clusters
    • Fraley, C. et al. (2005) Incremental model-based clustering for large datasets with small clusters. J. Comput. Graph. Stat., 14, 529-546.
    • (2005) J. Comput. Graph. Stat. , vol.14 , pp. 529-546
    • Fraley, C.1
  • 9
    • 54949126376 scopus 로고    scopus 로고
    • Flexmix version 2: finite mixtures with concomitant variables and varying and constant parameters
    • Grün, B. and Leisch, F. (2008) Flexmix version 2: finite mixtures with concomitant variables and varying and constant parameters. J. Stat. Softw., 28, 1-35.
    • (2008) J. Stat. Softw. , vol.28 , pp. 1-35
    • Grün, B.1    Leisch, F.2
  • 10
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • Handl, J. et al. (2005) Computational cluster validation in post-genomic data analysis. Bioinformatics, 21, 3201-3212.
    • (2005) Bioinformatics , vol.21 , pp. 3201-3212
    • Handl, J.1
  • 11
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert, L. and Arabie, P. (1985) Comparing partitions. J. Classif., 2, 193-218.
    • (1985) J. Classif. , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 12
    • 11244352554 scopus 로고    scopus 로고
    • kernlab - an S4 package for kernel methods in R
    • Karatzoglou, A. et al. (2004) kernlab - an S4 package for kernel methods in R. J. Stat. Softw., 11, 1-20.
    • (2004) J. Stat. Softw. , vol.11 , pp. 1-20
    • Karatzoglou, A.1
  • 13
    • 11244333649 scopus 로고    scopus 로고
    • FlexMix: a general framework for finite mixture models and latent class regression in R
    • Leisch, F. (2004) FlexMix: a general framework for finite mixture models and latent class regression in R. J. Stat. Softw., 11, 1-18.
    • (2004) J. Stat. Softw. , vol.11 , pp. 1-18
    • Leisch, F.1
  • 14
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixedeffects model with B-splines
    • Luan, Y. and Li, H. (2003) Clustering of time-course gene expression data using a mixedeffects model with B-splines. Bioinformatics, 19, 474-482.
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 15
    • 33644855951 scopus 로고    scopus 로고
    • A data-driven clustering method for time course gene expression data
    • Ma, P. et al. (2006) A data-driven clustering method for time course gene expression data. Nucleic Acids Res., 34, 1261-1269.
    • (2006) Nucleic Acids Res. , vol.34 , pp. 1261-1269
    • Ma, P.1
  • 16
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: analysis and an algorithm
    • Dietterich, T. et al. (eds), MIT Press, Cambridge, USA
    • Ng, A.Y. et al. (2001) On spectral clustering: analysis and an algorithm. In Dietterich, T. et al. (eds) Advances in Neural Information Processing Systems 14, MIT Press, Cambridge, USA, pp. 849-856.
    • (2001) Advances in Neural Information Processing Systems 14 , pp. 849-856
    • Ng, A.Y.1
  • 17
    • 33747890494 scopus 로고    scopus 로고
    • A mixture model with random-effects components for clustering correlated gene-expression profiles
    • Ng, S.K. et al. (2006) A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics, 22, 1745-1752.
    • (2006) Bioinformatics , vol.22 , pp. 1745-1752
    • Ng, S.K.1
  • 18
    • 0037047161 scopus 로고    scopus 로고
    • Cluster analysis of gene expression dynamics
    • Ramoni, M.F. et al. (2002) Cluster analysis of gene expression dynamics. Proc. Natl Acad. Sci. USA, 99, 9121-9126.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 9121-9126
    • Ramoni, M.F.1
  • 19
    • 70149113077 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
    • R Development Core Team (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
    • (2009) R: A Language and Environment for Statistical Computing
  • 20
    • 64549114102 scopus 로고    scopus 로고
    • gcExplorer: interactive exploration of gene clusters
    • Scharl, T. and Leisch, F. (2009) gcExplorer: interactive exploration of gene clusters. Bioinformatics, 25, 1089-1090.
    • (2009) Bioinformatics , vol.25 , pp. 1089-1090
    • Scharl, T.1    Leisch, F.2
  • 21
    • 33750021210 scopus 로고    scopus 로고
    • Evaluation and comparison of gene clustering methods in microarray analysis
    • Thalamuthu, A. et al. (2006) Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics, 22, 2405-2412.
    • (2006) Bioinformatics , vol.22 , pp. 2405-2412
    • Thalamuthu, A.1
  • 22
    • 21644476820 scopus 로고    scopus 로고
    • Model-based clustering for image segmentation and large datasets via sampling
    • Wehrens, R. et al. (2004) Model-based clustering for image segmentation and large datasets via sampling. J. Classif., 21, 231-253.
    • (2004) J. Classif. , vol.21 , pp. 231-253
    • Wehrens, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.