메뉴 건너뛰기




Volumn 197, Issue 5, 2012, Pages 613-624

Nucleostemin prevents telomere damage by promoting PML-IV recruitment to SUMOylated TRF1

Author keywords

[No Author keywords available]

Indexed keywords

GUANINE NUCLEOTIDE BINDING PROTEIN; NUCLEOSTEMIN; PROMYELOCYTIC LEUKEMIA PROTEIN; RAD51 PROTEIN; TELOMERASE; TELOMERIC REPEAT BINDING FACTOR 1; TELOMERIC REPEAT BINDING FACTOR 2; UNCLASSIFIED DRUG;

EID: 84862630360     PISSN: 00219525     EISSN: 15408140     Source Type: Journal    
DOI: 10.1083/jcb.201109038     Document Type: Article
Times cited : (43)

References (47)
  • 1
    • 0043071544 scopus 로고    scopus 로고
    • Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection
    • Baddoo, M., K. Hill, R. Wilkinson, D. Gaupp, C. Hughes, G.C. Kopen, and D.G. Phinney. 2003. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J. Cell. Biochem. 89:1235-1249. http://dx.doi.org/10.1002/jcb.10594
    • (2003) J. Cell. Biochem. , vol.89 , pp. 1235-1249
    • Baddoo, M.1    Hill, K.2    Wilkinson, R.3    Gaupp, D.4    Hughes, C.5    Kopen, G.C.6    Phinney, D.G.7
  • 2
    • 33845432311 scopus 로고    scopus 로고
    • Evolutionarily conserved role of nucleostemin: controlling proliferation of stem/progenitor cells during early vertebrate development
    • Beekman, C., M. Nichane, S. De Clercq, M. Maetens, T. Floss, W. Wurst, E. Bellefroid, and J.C. Marine. 2006. Evolutionarily conserved role of nucleostemin: controlling proliferation of stem/progenitor cells during early vertebrate development. Mol. Cell. Biol. 26:9291-9301. http://dx.doi.org/10.1128/MCB.01183-06
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 9291-9301
    • Beekman, C.1    Nichane, M.2    De Clercq, S.3    Maetens, M.4    Floss, T.5    Wurst, W.6    Bellefroid, E.7    Marine, J.C.8
  • 3
    • 0029162563 scopus 로고
    • Telomere elongation in immortal human cells without detectable telomerase activity
    • Bryan, T.M., A. Englezou, J. Gupta, S. Bacchetti, and R.R. Reddel. 1995. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14:4240-4248.
    • (1995) EMBO J , vol.14 , pp. 4240-4248
    • Bryan, T.M.1    Englezou, A.2    Gupta, J.3    Bacchetti, S.4    Reddel, R.R.5
  • 4
    • 0030697342 scopus 로고    scopus 로고
    • Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines
    • Bryan, T.M., A. Englezou, L. Dalla-Pozza, M.A. Dunham, and R.R. Reddel. 1997. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3:1271-1274. http://dx.doi.org/10.1038/nm1197-1271
    • (1997) Nat. Med. , vol.3 , pp. 1271-1274
    • Bryan, T.M.1    Englezou, A.2    Dalla-Pozza, L.3    Dunham, M.A.4    Reddel, R.R.5
  • 5
    • 77956541101 scopus 로고    scopus 로고
    • Telomeres avoid end detection by severing the checkpoint signal transduction pathway
    • Carneiro, T., L. Khair, C.C. Reis, V. Borges, B.A. Moser, T.M. Nakamura, and M.G. Ferreira. 2010. Telomeres avoid end detection by severing the checkpoint signal transduction pathway. Nature. 467:228-232. http://dx.doi.org/10.1038/nature09353
    • (2010) Nature , vol.467 , pp. 228-232
    • Carneiro, T.1    Khair, L.2    Reis, C.C.3    Borges, V.4    Moser, B.A.5    Nakamura, T.M.6    Ferreira, M.G.7
  • 6
    • 34047103990 scopus 로고    scopus 로고
    • C-terminal modifications regulate MDM2 dissociation and nuclear export of p53
    • Carter, S., O. Bischof, A. Dejean, and K.H. Vousden. 2007. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat. Cell Biol. 9:428-435. http://dx.doi.org/10.1038/ncb1562
    • (2007) Nat. Cell Biol. , vol.9 , pp. 428-435
    • Carter, S.1    Bischof, O.2    Dejean, A.3    Vousden, K.H.4
  • 7
    • 24944460598 scopus 로고    scopus 로고
    • Shelterin: the protein complex that shapes and safeguards human telomeres
    • de Lange, T. 2005. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19:2100-2110. http://dx.doi.org/10.1101/gad.1346005
    • (2005) Genes Dev , vol.19 , pp. 2100-2110
    • de Lange, T.1
  • 8
    • 0033672470 scopus 로고    scopus 로고
    • Telomere maintenance by recombination in human cells
    • Dunham, M.A., A.A. Neumann, C.L. Fasching, and R.R. Reddel. 2000. Telomere maintenance by recombination in human cells. Nat. Genet. 26:447-450. http://dx.doi.org/10.1038/82586
    • (2000) Nat. Genet. , vol.26 , pp. 447-450
    • Dunham, M.A.1    Neumann, A.A.2    Fasching, C.L.3    Reddel, R.R.4
  • 9
    • 34547647631 scopus 로고    scopus 로고
    • DNA damage induces alternative lengthening of telomeres (ALT) associated promyelocytic leukemia bodies that preferentially associate with linear telomeric DNA
    • Fasching, C.L., A.A. Neumann, A. Muntoni, T.R. Yeager, and R.R. Reddel. 2007. DNA damage induces alternative lengthening of telomeres (ALT) associated promyelocytic leukemia bodies that preferentially associate with linear telomeric DNA. Cancer Res. 67:7072-7077. http://dx.doi.org/10.1158/0008-5472.CAN-07-1556
    • (2007) Cancer Res , vol.67 , pp. 7072-7077
    • Fasching, C.L.1    Neumann, A.A.2    Muntoni, A.3    Yeager, T.R.4    Reddel, R.R.5
  • 10
    • 0022402513 scopus 로고
    • Identification of a specific telomere terminal transferase activity in Tetrahymena extracts
    • Greider, C.W., and E.H. Blackburn. 1985. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 43:405-413. http://dx.doi.org/10.1016/0092-8674(85)90170-9
    • (1985) Cell , vol.43 , pp. 405-413
    • Greider, C.W.1    Blackburn, E.H.2
  • 11
    • 0024978857 scopus 로고
    • A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis
    • Greider, C.W., and E.H. Blackburn. 1989. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature. 337:331-337. http://dx.doi.org/10.1038/337331a0
    • (1989) Nature , vol.337 , pp. 331-337
    • Greider, C.W.1    Blackburn, E.H.2
  • 12
    • 0030060521 scopus 로고    scopus 로고
    • Telomeres, telomerase and cancer
    • Greider, C.W., and E.H. Blackburn. 1996. Telomeres, telomerase and cancer. Sci. Am. 274:92-97. http://dx.doi.org/10.1038/scientificamerican0296-92
    • (1996) Sci. Am. , vol.274 , pp. 92-97
    • Greider, C.W.1    Blackburn, E.H.2
  • 13
    • 0034503110 scopus 로고    scopus 로고
    • ALT-associated PML bodies are present in viable cells and are enriched in cells in the G(2)/M phase of the cell cycle
    • Grobelny, J.V., A.K. Godwin, and D. Broccoli. 2000. ALT-associated PML bodies are present in viable cells and are enriched in cells in the G(2)/M phase of the cell cycle. J. Cell Sci. 113:4577-4585.
    • (2000) J. Cell Sci. , vol.113 , pp. 4577-4585
    • Grobelny, J.V.1    Godwin, A.K.2    Broccoli, D.3
  • 14
    • 0035969125 scopus 로고    scopus 로고
    • PML protein isoforms and the RBCC/TRIM motif
    • Jensen, K., C. Shiels, and P.S. Freemont. 2001. PML protein isoforms and the RBCC/TRIM motif. Oncogene. 20:7223-7233. http://dx.doi.org/10.1038/sj.onc.1204765
    • (2001) Oncogene , vol.20 , pp. 7223-7233
    • Jensen, K.1    Shiels, C.2    Freemont, P.S.3
  • 15
    • 34447559500 scopus 로고    scopus 로고
    • Identification of candidate alternative lengthening of telomeres genes by methionine restriction and RNA interference
    • Jiang, W.Q., Z.H. Zhong, J.D. Henson, and R.R. Reddel. 2007. Identification of candidate alternative lengthening of telomeres genes by methionine restriction and RNA interference. Oncogene. 26:4635-4647. http://dx.doi.org/10.1038/sj.onc.1210260
    • (2007) Oncogene , vol.26 , pp. 4635-4647
    • Jiang, W.Q.1    Zhong, Z.H.2    Henson, J.D.3    Reddel, R.R.4
  • 16
    • 1842529566 scopus 로고    scopus 로고
    • Telomeric DNA damage by topoisomerase I. A possible mechanism for cell killing by camptothecin
    • Kang, M.R., M.T. Muller, and I.K. Chung. 2004. Telomeric DNA damage by topoisomerase I. A possible mechanism for cell killing by camptothecin. J. Biol. Chem. 279:12535-12541. http://dx.doi.org/10.1074/jbc.M309779200
    • (2004) J. Biol. Chem. , vol.279 , pp. 12535-12541
    • Kang, M.R.1    Muller, M.T.2    Chung, I.K.3
  • 17
    • 0345306567 scopus 로고    scopus 로고
    • Fission yeast Rhp51 is required for the maintenance of telomere structure in the absence of the Ku heterodimer
    • Kibe, T., K. Tomita, A. Matsuura, D. Izawa, T. Kodaira, T. Ushimaru, M. Uritani, and M. Ueno. 2003. Fission yeast Rhp51 is required for the maintenance of telomere structure in the absence of the Ku heterodimer. Nucleic Acids Res. 31:5054-5063. http://dx.doi.org/10.1093/nar/gkg718
    • (2003) Nucleic Acids Res , vol.31 , pp. 5054-5063
    • Kibe, T.1    Tomita, K.2    Matsuura, A.3    Izawa, D.4    Kodaira, T.5    Ushimaru, T.6    Uritani, M.7    Ueno, M.8
  • 18
    • 78549274789 scopus 로고    scopus 로고
    • Tumor-initiating function of nucleostemin-enriched mammary tumor cells
    • Lin, T., L. Meng, Y. Li, and R.Y. Tsai. 2010. Tumor-initiating function of nucleostemin-enriched mammary tumor cells. Cancer Res. 70:9444-9452. http://dx.doi.org/10.1158/0008-5472.CAN-10-2159
    • (2010) Cancer Res , vol.70 , pp. 9444-9452
    • Lin, T.1    Meng, L.2    Li, Y.3    Tsai, R.Y.4
  • 19
  • 22
    • 33846122599 scopus 로고    scopus 로고
    • Multiple controls regulate nucleostemin partitioning between nucleolus and nucleoplasm
    • Meng, L., H. Yasumoto, and R.Y. Tsai. 2006. Multiple controls regulate nucleostemin partitioning between nucleolus and nucleoplasm. J. Cell Sci. 119:5124-5136. http://dx.doi.org/10.1242/jcs.03292
    • (2006) J. Cell Sci. , vol.119 , pp. 5124-5136
    • Meng, L.1    Yasumoto, H.2    Tsai, R.Y.3
  • 23
    • 81355149460 scopus 로고    scopus 로고
    • Nucleostemin inhibits TRF1 dimerization and shortens its dynamic association with the telomere
    • Meng, L., J.K. Hsu, Q. Zhu, T. Lin, and R.Y. Tsai. 2011. Nucleostemin inhibits TRF1 dimerization and shortens its dynamic association with the telomere. J. Cell Sci. 124:3706-3714. http://dx.doi.org/10.1242/jcs.089672
    • (2011) J. Cell Sci. , vol.124 , pp. 3706-3714
    • Meng, L.1    Hsu, J.K.2    Zhu, Q.3    Lin, T.4    Tsai, R.Y.5
  • 24
    • 2942623564 scopus 로고    scopus 로고
    • Localization of hRad9, hHus1, hRad1, and hRad17 and caffeine-sensitive DNA replication at the alternative lengthening of telomeres-associated promyelocytic leukemia body
    • Nabetani, A., O. Yokoyama, and F. Ishikawa. 2004. Localization of hRad9, hHus1, hRad1, and hRad17 and caffeine-sensitive DNA replication at the alternative lengthening of telomeres-associated promyelocytic leukemia body. J. Biol. Chem. 279:25849-25857. http://dx.doi.org/10.1074/jbc.M312652200
    • (2004) J. Biol. Chem. , vol.279 , pp. 25849-25857
    • Nabetani, A.1    Yokoyama, O.2    Ishikawa, F.3
  • 26
    • 58049195421 scopus 로고    scopus 로고
    • Identification of stem cells during prepubertal spermatogenesis via monitoring of nucleostemin promoter activity
    • Ohmura, M., K. Naka, T. Hoshii, T. Muraguchi, H. Shugo, A. Tamase, N. Uema, T. Ooshio, F. Arai, K. Takubo, et al. 2008. Identification of stem cells during prepubertal spermatogenesis via monitoring of nucleostemin promoter activity. Stem Cells. 26:3237-3246. http://dx.doi.org/10.1634/stemcells.2008-0506
    • (2008) Stem Cells , vol.26 , pp. 3237-3246
    • Ohmura, M.1    Naka, K.2    Hoshii, T.3    Muraguchi, T.4    Shugo, H.5    Tamase, A.6    Uema, N.7    Ooshio, T.8    Arai, F.9    Takubo, K.10
  • 27
    • 23344442009 scopus 로고    scopus 로고
    • Human MMS21/NSE2 is a SUMO ligase required for DNA repair
    • Potts, P.R., and H. Yu. 2005. Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol. 25:7021-7032. http://dx.doi.org/10.1128/MCB.25.16.7021-7032.2005
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 7021-7032
    • Potts, P.R.1    Yu, H.2
  • 28
    • 34447129654 scopus 로고    scopus 로고
    • The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins
    • Potts, P.R., and H. Yu. 2007. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 14:581-590. http://dx.doi.org/10.1038/nsmb1259
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 581-590
    • Potts, P.R.1    Yu, H.2
  • 29
    • 0031010342 scopus 로고    scopus 로고
    • A survey of telomerase activity in human cancer
    • Shay, J.W., and S. Bacchetti. 1997. A survey of telomerase activity in human cancer. Eur. J. Cancer. 33:787-791. http://dx.doi.org/10.1016/S0959-8049(97) 00062-2
    • (1997) Eur. J. Cancer. , vol.33 , pp. 787-791
    • Shay, J.W.1    Bacchetti, S.2
  • 31
    • 33745046135 scopus 로고    scopus 로고
    • Inside the mammalian telomere interactome: regulation and regulatory activities of telomeres
    • Songyang, Z., and D. Liu. 2006. Inside the mammalian telomere interactome: regulation and regulatory activities of telomeres. Crit. Rev. Eukaryot. Gene Expr. 16:103-118.
    • (2006) Crit. Rev. Eukaryot. Gene Expr. , vol.16 , pp. 103-118
    • Songyang, Z.1    Liu, D.2
  • 32
    • 70349267582 scopus 로고    scopus 로고
    • Nucleolar modulation of TRF1: a dynamic way to regulate telomere and cell cycle by nucleostemin and GNL3L
    • Tsai, R.Y. 2009. Nucleolar modulation of TRF1: a dynamic way to regulate telomere and cell cycle by nucleostemin and GNL3L. Cell Cycle. 8: 2912-2916.
    • (2009) Cell Cycle , vol.8 , pp. 2912-2916
    • Tsai, R.Y.1
  • 33
    • 0036894648 scopus 로고    scopus 로고
    • A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells
    • Tsai, R.Y., and R.D. McKay. 2002. A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev. 16:2991-3003. http://dx.doi.org/10.1101/gad.55671
    • (2002) Genes Dev , vol.16 , pp. 2991-3003
    • Tsai, R.Y.1    McKay, R.D.2
  • 34
    • 13844294281 scopus 로고    scopus 로고
    • A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin
    • Tsai, R.Y., and R.D. McKay. 2005. A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin. J. Cell Biol. 168:179-184. http://dx.doi.org/10.1083/jcb.200409053
    • (2005) J. Cell Biol. , vol.168 , pp. 179-184
    • Tsai, R.Y.1    McKay, R.D.2
  • 35
    • 70349298364 scopus 로고    scopus 로고
    • Nucleostemin: a latecomer with new tricks
    • Tsai, R.Y., and L. Meng. 2009. Nucleostemin: a latecomer with new tricks. Int. J. Biochem. Cell Biol. 41:2122-2124. http://dx.doi.org/10.1016/j.biocel.2009.05.020
    • (2009) Int. J. Biochem. Cell Biol. , vol.41 , pp. 2122-2124
    • Tsai, R.Y.1    Meng, L.2
  • 36
    • 0031027618 scopus 로고    scopus 로고
    • Control of telomere length by the human telomeric protein TRF1
    • van Steensel, B., and T. de Lange. 1997. Control of telomere length by the human telomeric protein TRF1. Nature. 385:740-743. http://dx.doi.org/10.1038/385740a0
    • (1997) Nature , vol.385 , pp. 740-743
    • van Steensel, B.1    de Lange, T.2
  • 37
    • 0032489012 scopus 로고    scopus 로고
    • TRF2 protects human telomeres from end-to-end fusions
    • van Steensel, B., A. Smogorzewska, and T. de Lange. 1998. TRF2 protects human telomeres from end-to-end fusions. Cell. 92:401-413. http://dx.doi.org/10.1016/S0092-8674(00)80932-0
    • (1998) Cell , vol.92 , pp. 401-413
    • van Steensel, B.1    Smogorzewska, A.2    de Lange, T.3
  • 38
    • 0034730633 scopus 로고    scopus 로고
    • NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres
    • Wu, G., W.H. Lee, and P.L. Chen. 2000. NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. J. Biol. Chem. 275:30618-30622. http://dx.doi.org/10.1074/jbc.C000390200
    • (2000) J. Biol. Chem. , vol.275 , pp. 30618-30622
    • Wu, G.1    Lee, W.H.2    Chen, P.L.3
  • 39
    • 0037843426 scopus 로고    scopus 로고
    • Assembly of functional ALTassociated promyelocytic leukemia bodies requires Nijmegen Breakage Syndrome 1
    • Wu, G., X. Jiang, W.H. Lee, and P.L. Chen. 2003. Assembly of functional ALTassociated promyelocytic leukemia bodies requires Nijmegen Breakage Syndrome 1. Cancer Res. 63:2589-2595.
    • (2003) Cancer Res , vol.63 , pp. 2589-2595
    • Wu, G.1    Jiang, X.2    Lee, W.H.3    Chen, P.L.4
  • 40
    • 0033199695 scopus 로고    scopus 로고
    • Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body
    • Yeager, T.R., A.A. Neumann, A. Englezou, L.I. Huschtscha, J.R. Noble, and R.R. Reddel. 1999. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 59:4175-4179.
    • (1999) Cancer Res , vol.59 , pp. 4175-4179
    • Yeager, T.R.1    Neumann, A.A.2    Englezou, A.3    Huschtscha, L.I.4    Noble, J.R.5    Reddel, R.R.6
  • 42
    • 77950021419 scopus 로고    scopus 로고
    • PML3 interacts with TRF1 and is essential for ALT-associated PML bodies assembly in U2OS cells
    • Yu, J., J. Lan, C. Wang, Q. Wu, Y. Zhu, X. Lai, J. Sun, C. Jin, and H. Huang. 2010. PML3 interacts with TRF1 and is essential for ALT-associated PML bodies assembly in U2OS cells. Cancer Lett. 291:177-186. http://dx.doi.org/10.1016/j.canlet.2009.10.009
    • (2010) Cancer Lett , vol.291 , pp. 177-186
    • Yu, J.1    Lan, J.2    Wang, C.3    Wu, Q.4    Zhu, Y.5    Lai, X.6    Sun, J.7    Jin, C.8    Huang, H.9
  • 43
    • 0037390962 scopus 로고    scopus 로고
    • TERT suppresses apoptotis at a premitochondrial step by a mechanism requiring reverse transcriptase activity and 14-3-3 protein-binding ability
    • Zhang, P., S.L. Chan, W. Fu, M. Mendoza, and M.P. Mattson. 2003. TERT suppresses apoptotis at a premitochondrial step by a mechanism requiring reverse transcriptase activity and 14-3-3 protein-binding ability. FASEB J. 17:767-769.
    • (2003) FASEB J , vol.17 , pp. 767-769
    • Zhang, P.1    Chan, S.L.2    Fu, W.3    Mendoza, M.4    Mattson, M.P.5
  • 44
    • 0037405046 scopus 로고    scopus 로고
    • Role of Pin2/TRF1 in telomere maintenance and cell cycle control
    • Zhou, X.Z., K. Perrem, and K.P. Lu. 2003. Role of Pin2/TRF1 in telomere maintenance and cell cycle control. J. Cell. Biochem. 89:19-37. http://dx.doi.org/10.1002/jcb.10496
    • (2003) J. Cell. Biochem. , vol.89 , pp. 19-37
    • Zhou, X.Z.1    Perrem, K.2    Lu, K.P.3
  • 45
    • 0342561644 scopus 로고    scopus 로고
    • Cell-cycleregulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres
    • Zhu, X.D., B. Küster, M. Mann, J.H. Petrini, and T. de Lange. 2000. Cell-cycleregulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat. Genet. 25:347-352. http://dx.doi.org/10.1038/77139
    • (2000) Nat. Genet. , vol.25 , pp. 347-352
    • Zhu, X.D.1    Küster, B.2    Mann, M.3    Petrini, J.H.4    de Lange, T.5
  • 46
    • 33845387497 scopus 로고    scopus 로고
    • Nucleostemin delays cellular senescence and negatively regulates TRF1 protein stability
    • Zhu, Q., H. Yasumoto, and R.Y. Tsai. 2006. Nucleostemin delays cellular senescence and negatively regulates TRF1 protein stability. Mol. Cell. Biol. 26:9279-9290. http://dx.doi.org/10.1128/MCB.00724-06
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 9279-9290
    • Zhu, Q.1    Yasumoto, H.2    Tsai, R.Y.3
  • 47
    • 66349094239 scopus 로고    scopus 로고
    • GNL3L stabilizes the TRF1 complex and promotes mitotic transition
    • Zhu, Q., L. Meng, J.K. Hsu, T. Lin, J. Teishima, and R.Y. Tsai. 2009. GNL3L stabilizes the TRF1 complex and promotes mitotic transition. J. Cell Biol. 185:827-839. http://dx.doi.org/10.1083/jcb.200812121
    • (2009) J. Cell Biol. , vol.185 , pp. 827-839
    • Zhu, Q.1    Meng, L.2    Hsu, J.K.3    Lin, T.4    Teishima, J.5    Tsai, R.Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.