메뉴 건너뛰기




Volumn 61, Issue 1-4, 2012, Pages 53-61

Application of backpropagation neural network for spindle vibration-based tool wear monitoring in micro-milling

Author keywords

Microcutting; Monitoring; Neural network; Tool wear; Vibration

Indexed keywords

BACK PROPAGATION NEURAL NETWORKS; CLASS MEAN; CLASSIFICATION RATES; CONDITION MONITORING SYSTEMS; FREQUENCY DOMAINS; MICRO MILLING; MICRO-CUTTING; MICRO-END MILLS; MICRO-TOOL; RESEARCH PLATFORMS; SENSOR INSTALLATION; SIGNAL TRANSFORMATION; SINGLE SENSOR; SPECTRAL FEATURE; SPINDLE HOUSING; SYSTEM MODELS; THREE AXIS ACCELEROMETERS; TIME DOMAIN; TOOL CONDITION; TOOL WEAR; TOOL WEAR MONITORING; VIBRATION; VIBRATION SIGNAL; WORK PIECES;

EID: 84862526248     PISSN: 02683768     EISSN: 14333015     Source Type: Journal    
DOI: 10.1007/s00170-011-3703-x     Document Type: Article
Times cited : (99)

References (34)
  • 1
    • 0034516353 scopus 로고    scopus 로고
    • State of the art of micromachining
    • T Masuzawa 2000 State of the art of micromachining CIRP Ann 49 2 473 488 10.1016/S0007-8506(07)63451-9 (Pubitemid 32076459)
    • (2000) CIRP Annals - Manufacturing Technology , vol.49 , Issue.2 , pp. 473-488
    • Masuzawa, T.1
  • 4
    • 40649119235 scopus 로고    scopus 로고
    • Recent Advances in Mechanical Micromachining
    • DOI 10.1016/j.cirp.2006.10.006, PII S1660277306000077
    • D Dornfeld S Min Y Takeuchi 2006 Recent advances in mechanical micromachining Annals of the CIRP 55 2 745 768 10.1016/j.cirp.2006.10.006 (Pubitemid 46148815)
    • (2006) CIRP Annals - Manufacturing Technology , vol.55 , Issue.2 , pp. 745-768
    • Dornfeld, D.1    Min, S.2    Takeuchi, Y.3
  • 5
    • 0029489274 scopus 로고
    • Tool condition monitoring (TCM)-the status of research and industrial application
    • 10.1016/S0007-8506(07)60503-4
    • G Byrne D Dornfeld I Inasaki G Ketteler W Konig R Teti 1995 Tool condition monitoring (TCM)-the status of research and industrial application Annals of CIRP 44 2 541 567 10.1016/S0007-8506(07)60503-4
    • (1995) Annals of CIRP , vol.44 , Issue.2 , pp. 541-567
    • Byrne, G.1    Dornfeld, D.2    Inasaki, I.3    Ketteler, G.4    Konig, W.5    Teti, R.6
  • 6
    • 0033728441 scopus 로고    scopus 로고
    • Sensor signals for tool-wear monitoring in metal cutting operations-a review of methods
    • 10.1016/S0890-6955(99)00122-4
    • E Dimla DE Dimla Snr 2000 Sensor signals for tool-wear monitoring in metal cutting operations-a review of methods Int J Mach Tools Manuf 40 1073 1098 10.1016/S0890-6955(99)00122-4
    • (2000) Int J Mach Tools Manuf , vol.40 , pp. 1073-1098
    • Dimla, E.1    Dimla Snr, D.E.2
  • 9
    • 77249125824 scopus 로고    scopus 로고
    • A review of machining monitoring systems based on artificial intelligence process models
    • 10.1007/s00170-009-2191-8
    • JV Abellan-Nebot FR Subirón 2010 A review of machining monitoring systems based on artificial intelligence process models Int J Adv Manuf Technol 47 237 257 10.1007/s00170-009-2191-8
    • (2010) Int J Adv Manuf Technol , vol.47 , pp. 237-257
    • Abellan-Nebot, J.V.1    Subirón, F.R.2
  • 10
    • 0037402139 scopus 로고    scopus 로고
    • Drilling wear detection and classification using vibration signals and artificial neural network
    • 10.1016/S0890-6955(03)00023-3
    • I Abu-Mahfouz 2003 Drilling wear detection and classification using vibration signals and artificial neural network Int J Mach Tools Manuf 43 707 720 10.1016/S0890-6955(03)00023-3
    • (2003) Int J Mach Tools Manuf , vol.43 , pp. 707-720
    • Abu-Mahfouz, I.1
  • 12
    • 38149114090 scopus 로고    scopus 로고
    • Analysis of the structure of vibration signals for tool wear detection
    • 10.1016/j.ymssp.2007.09.012
    • FJ Alonso DR Salgado 2008 Analysis of the structure of vibration signals for tool wear detection Mech Syst Signal Process 22 735 748 10.1016/j.ymssp. 2007.09.012
    • (2008) Mech Syst Signal Process , vol.22 , pp. 735-748
    • Alonso, F.J.1    Salgado, D.R.2
  • 14
    • 0037402139 scopus 로고    scopus 로고
    • Drilling wear detection and classification using vibration signals and artificial neural network
    • 10.1016/S0890-6955(03)00023-3
    • AM Issam 2003 Drilling wear detection and classification using vibration signals and artificial neural network Int J Mach Tools Manuf 43 707 720 10.1016/S0890-6955(03)00023-3
    • (2003) Int J Mach Tools Manuf , vol.43 , pp. 707-720
    • Issam, A.M.1
  • 18
    • 52649150350 scopus 로고    scopus 로고
    • Tool condition monitoring in an end-milling operation based on the vibration signal collected through a microcontroller-based data acquisition system
    • 10.1007/s00170-007-1186-6
    • J Zhang JC Chen 2008 Tool condition monitoring in an end-milling operation based on the vibration signal collected through a microcontroller- based data acquisition system Int J Adv Manuf Technol 39 118 128 10.1007/s00170-007-1186-6
    • (2008) Int J Adv Manuf Technol , vol.39 , pp. 118-128
    • Zhang, J.1    Chen, J.C.2
  • 21
    • 0030216598 scopus 로고    scopus 로고
    • Development of a tool failure detection system using multi-sensors
    • DOI 10.1016/0890-6955(96)00115-0
    • JD Kim IH Choi 1996 Development of a tool failure detection system using multi-sensors INT J MachTools Manufact 36 861 870 1432410 10.1016/0890-6955(96) 00115-0 (Pubitemid 126359954)
    • (1996) International Journal of Machine Tools and Manufacture , vol.36 , Issue.8 , pp. 861-870
    • Kim, J.-D.1    Choi, I.-H.2
  • 22
    • 67349144405 scopus 로고    scopus 로고
    • Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion
    • 10.1016/j.jmatprotec.2008.11.038
    • S Binsaeid S Asfour S Cho A Onar 2009 Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion J Mater Process Technol 209 4728 4738 10.1016/j.jmatprotec.2008.11.038
    • (2009) J Mater Process Technol , vol.209 , pp. 4728-4738
    • Binsaeid, S.1    Asfour, S.2    Cho, S.3    Onar, A.4
  • 23
    • 63449103709 scopus 로고    scopus 로고
    • On modeling of tool wear using sensor fusion and polynomial classifiers
    • 10.1016/j.ymssp.2009.02.001
    • I Deiab K Assaleh F Hammad 2009 On modeling of tool wear using sensor fusion and polynomial classifiers Mech Syst Signal Process 23 1719 1729 10.1016/j.ymssp.2009.02.001
    • (2009) Mech Syst Signal Process , vol.23 , pp. 1719-1729
    • Deiab, I.1    Assaleh, K.2    Hammad, F.3
  • 24
    • 56249103141 scopus 로고    scopus 로고
    • Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system
    • 10.1016/j.ymssp.2008.02.010
    • C Aliustaoglu MH Ertunc H Ocak 2009 Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system Mech SystSignal Process 23 539 546 10.1016/j.ymssp.2008.02.010
    • (2009) Mech SystSignal Process , vol.23 , pp. 539-546
    • Aliustaoglu, C.1    Ertunc, M.H.2    Ocak, H.3
  • 26
    • 74249109730 scopus 로고    scopus 로고
    • Design of multi-sensor fusion-based tool condition monitoring system in end milling
    • 10.1007/s00170-009-2110-z
    • S Cho S Binsaeid S Asfour 2010 Design of multi-sensor fusion-based tool condition monitoring system in end milling Int J Adv Manuf Technol 46 681 694 10.1007/s00170-009-2110-z
    • (2010) Int J Adv Manuf Technol , vol.46 , pp. 681-694
    • Cho, S.1    Binsaeid, S.2    Asfour, S.3
  • 27
    • 67349190532 scopus 로고    scopus 로고
    • Tool wear monitoring of micro-milling operations
    • 10.1016/j.jmatprotec.2009.01.013
    • M Malekiana SS Parka BG Martin 2009 Tool wear monitoring of micro-milling operations J Mater Process Technol 209 4903 4914 10.1016/j.jmatprotec.2009.01. 013
    • (2009) J Mater Process Technol , vol.209 , pp. 4903-4914
    • Malekiana, M.1    Parka, S.S.2    Martin, B.G.3
  • 30
    • 0032326616 scopus 로고    scopus 로고
    • Micro-end-milling - III. Wear estimation and tool breakage detection using acoustic emission signals
    • I Tansel M Trujillo A Nedbouyan C Velez WY Bao TT Arkan 1998 Micro-end-milling - III. Wear estimation and tool breakage detection using acoustic emission signals. Int J Mach Tools Manuf 38 609 620
    • (1998) Int J Mach Tools Manuf , vol.38 , pp. 609-620
    • Tansel, I.1    Trujillo, M.2    Nedbouyan, A.3    Velez, C.4    Bao, W.Y.5    Arkan, T.T.6
  • 31
    • 56449089064 scopus 로고    scopus 로고
    • Application of AE and cutting force signals in tool condition monitoring in micro-milling
    • 10.1016/j.cirpj.2008.09.007
    • K Jemielniak PJ Arrazola 2008 Application of AE and cutting force signals in tool condition monitoring in micro-milling CIRP J Manuf Sci Technol 1 97 102 10.1016/j.cirpj.2008.09.007
    • (2008) CIRP J Manuf Sci Technol , vol.1 , pp. 97-102
    • Jemielniak, K.1    Arrazola, P.J.2
  • 32
    • 56249121170 scopus 로고    scopus 로고
    • Multi-category micro-milling tool wear monitoring with continuous hidden Markov models
    • 10.1016/j.ymssp.2008.04.010
    • K Zhu YS Wong GS Hong 2009 Multi-category micro-milling tool wear monitoring with continuous hidden Markov models Mech Syst Signal Process 23 547 560 10.1016/j.ymssp.2008.04.010
    • (2009) Mech Syst Signal Process , vol.23 , pp. 547-560
    • Zhu, K.1    Wong, Y.S.2    Hong, G.S.3
  • 33
    • 0024017082 scopus 로고
    • Tool failure monitoring in turning by pattern recognition analysis of AE Signals
    • E Emel E Kannatey-Asibu Jr 1988 Tool failure monitoring in turning by pattern recognition analysis of AE Signals ASME J Eng Ind 110 137 145 10.1115/1.3187862 (Pubitemid 18620370)
    • (1988) Journal of engineering for industry , vol.110 , Issue.2 , pp. 137-145
    • Emel, E.1    Kannatey-Asibu Jr., E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.