메뉴 건너뛰기




Volumn 23, Issue 2, 2009, Pages 547-560

Multi-category micro-milling tool wear monitoring with continuous hidden Markov models

Author keywords

Feature selection; Hidden Markov models; Micro milling; Tool wear monitoring

Indexed keywords

COMPUTATIONAL GRAMMARS; CONDITION MONITORING; COPPER; LEARNING SYSTEMS; MACHINE TOOLS; MACHINING; MARKOV PROCESSES; MICROMACHINING; MILLING (MACHINING); MILLING MACHINES; MOBILE TELECOMMUNICATION SYSTEMS; OBJECT RECOGNITION; PROCESS ENGINEERING; PROCESS MONITORING; STATE ESTIMATION; THEOREM PROVING; TOOL STEEL; WEAR OF MATERIALS;

EID: 56249121170     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2008.04.010     Document Type: Article
Times cited : (164)

References (45)
  • 1
  • 2
    • 14744293866 scopus 로고    scopus 로고
    • The mechanics of machining at the micro-scale: Assessment of the current state of the science
    • Liu X., Devor R.E., Kapoor S.G., and Ehmann K.F. The mechanics of machining at the micro-scale: Assessment of the current state of the science. Journal of Manufacturing Science and Engineering 126 4 (2004) 666-677
    • (2004) Journal of Manufacturing Science and Engineering , vol.126 , Issue.4 , pp. 666-677
    • Liu, X.1    Devor, R.E.2    Kapoor, S.G.3    Ehmann, K.F.4
  • 4
    • 0034957180 scopus 로고    scopus 로고
    • Micro-cutting of steel to meet new requirements in miniaturization
    • Weule H., Huntrup V., and Tritschle H. Micro-cutting of steel to meet new requirements in miniaturization. CIRP Annals 50 (2001) 61-64
    • (2001) CIRP Annals , vol.50 , pp. 61-64
    • Weule, H.1    Huntrup, V.2    Tritschle, H.3
  • 5
  • 7
    • 0026435158 scopus 로고
    • Minimum thickness of cut in micro-machining
    • Ikawa N., Shimada S., and Tanaka H. Minimum thickness of cut in micro-machining. Nanotechnology 3 (1992) 6-9
    • (1992) Nanotechnology , vol.3 , pp. 6-9
    • Ikawa, N.1    Shimada, S.2    Tanaka, H.3
  • 8
    • 56249088329 scopus 로고    scopus 로고
    • M.B. Jun, Modeling and analysis of micro-end milling dynamics, Ph.D. Dissertation, University of Illinois Urbana-Champaign, 2005.
    • M.B. Jun, Modeling and analysis of micro-end milling dynamics, Ph.D. Dissertation, University of Illinois Urbana-Champaign, 2005.
  • 11
    • 46649100092 scopus 로고    scopus 로고
    • Cutting force denoising in micro-milling tool condition monitoring
    • doi:10.1080/00207540500469610
    • Zhu K.P., Hong G.S., and Wong Y.S. Cutting force denoising in micro-milling tool condition monitoring. International Journal of Production Research (2007) 1-18 doi:10.1080/00207540500469610
    • (2007) International Journal of Production Research , pp. 1-18
    • Zhu, K.P.1    Hong, G.S.2    Wong, Y.S.3
  • 12
    • 56249130462 scopus 로고    scopus 로고
    • International Standard Organization (ISO 8688-2: 1989) Tool life testing in milling-Part 2: End milling, 1989.
    • International Standard Organization (ISO 8688-2: 1989) Tool life testing in milling-Part 2: End milling, 1989.
  • 13
    • 0029489274 scopus 로고
    • Tool condition monitoring (TCM)-the status of research and industrial application
    • Byrne G., Dornfeld D., Inasaki I., Konig W., and Teti R. Tool condition monitoring (TCM)-the status of research and industrial application. Annals of CIRP 44 2 (1995) 541-567
    • (1995) Annals of CIRP , vol.44 , Issue.2 , pp. 541-567
    • Byrne, G.1    Dornfeld, D.2    Inasaki, I.3    Konig, W.4    Teti, R.5
  • 14
    • 0141999017 scopus 로고    scopus 로고
    • A new method for real-time tool condition monitoring in transfer machining stations
    • Wu Y., Escande P., and Du R. A new method for real-time tool condition monitoring in transfer machining stations. ASME Journal of Manufacturing Science and Engineering 123 (2001) 339-347
    • (2001) ASME Journal of Manufacturing Science and Engineering , vol.123 , pp. 339-347
    • Wu, Y.1    Escande, P.2    Du, R.3
  • 16
    • 0242269838 scopus 로고    scopus 로고
    • Tool condition monitoring in milling on cutting forces by a neural network
    • Saglam H., and Unuvar A. Tool condition monitoring in milling on cutting forces by a neural network. International Journal of Production Research 41 7 (2003) 1519-1532
    • (2003) International Journal of Production Research , vol.41 , Issue.7 , pp. 1519-1532
    • Saglam, H.1    Unuvar, A.2
  • 17
    • 0032205942 scopus 로고    scopus 로고
    • Multi-category classification of tool conditions using wavelet packets and ART2 network
    • Niu Y.M., Wong Y.S., and Hong G.S. Multi-category classification of tool conditions using wavelet packets and ART2 network. ASME Journal of Manufacturing Science and Technology 120 (1998) 807-815
    • (1998) ASME Journal of Manufacturing Science and Technology , vol.120 , pp. 807-815
    • Niu, Y.M.1    Wong, Y.S.2    Hong, G.S.3
  • 18
    • 1342329898 scopus 로고    scopus 로고
    • Identification of feature set for effective tool condition monitoring by acoustic emission sensing
    • Sun J., Hong G.S., Rahman M., and Wong Y.S. Identification of feature set for effective tool condition monitoring by acoustic emission sensing. International Journal of Production Research 42 5 (2004) 901-918
    • (2004) International Journal of Production Research , vol.42 , Issue.5 , pp. 901-918
    • Sun, J.1    Hong, G.S.2    Rahman, M.3    Wong, Y.S.4
  • 20
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of IEEE 77 2 (1989) 257-286
    • (1989) Proceedings of IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 21
  • 22
    • 3242733167 scopus 로고    scopus 로고
    • Diagnosis of mechanical fault signals using continuous hidden Markov model
    • Lee J.M., Kim S.J., Hwang Y., and Song C.S. Diagnosis of mechanical fault signals using continuous hidden Markov model. Journal of Sound and Vibration 276 (2004) 1065-1080
    • (2004) Journal of Sound and Vibration , vol.276 , pp. 1065-1080
    • Lee, J.M.1    Kim, S.J.2    Hwang, Y.3    Song, C.S.4
  • 23
    • 0347567526 scopus 로고    scopus 로고
    • Hidden Markov model based fault diagnosis for stamping processes
    • Ge M., Du R., and Xu Y. Hidden Markov model based fault diagnosis for stamping processes. Mechanical Systems and Signal Processing 18 (2004) 391-408
    • (2004) Mechanical Systems and Signal Processing , vol.18 , pp. 391-408
    • Ge, M.1    Du, R.2    Xu, Y.3
  • 24
    • 4344686230 scopus 로고    scopus 로고
    • Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery
    • Li Z., Wu Z., He Y., and Chu F. Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery. Mechanical Systems and Signal Processing 19 2 (2005) 329-339
    • (2005) Mechanical Systems and Signal Processing , vol.19 , Issue.2 , pp. 329-339
    • Li, Z.1    Wu, Z.2    He, Y.3    Chu, F.4
  • 25
    • 0026303376 scopus 로고    scopus 로고
    • L. P. Heck, J.H. McClellan, Mechanical system monitoring using HMMs, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, 1991, pp. 1697-1700.
    • L. P. Heck, J.H. McClellan, Mechanical system monitoring using HMMs, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, 1991, pp. 1697-1700.
  • 27
  • 29
    • 27744526118 scopus 로고    scopus 로고
    • A comparative evaluation of neural networks and hidden Markov models for monitoring turning tool wear
    • Scheffer C., Engelbrecht H., and Heyns P.S. A comparative evaluation of neural networks and hidden Markov models for monitoring turning tool wear. Neural Computation and Applications 14 (2005) 325-336
    • (2005) Neural Computation and Applications , vol.14 , pp. 325-336
    • Scheffer, C.1    Engelbrecht, H.2    Heyns, P.S.3
  • 30
    • 0031268934 scopus 로고    scopus 로고
    • Self-organizing feature maps and hidden Markov models for machine tool monitoring
    • Owsley L.M.D., Atlas L.E., and Bernard G.D. Self-organizing feature maps and hidden Markov models for machine tool monitoring. IEEE Transactions on Signal Processing 45 11 (1997) 2787-2798
    • (1997) IEEE Transactions on Signal Processing , vol.45 , Issue.11 , pp. 2787-2798
    • Owsley, L.M.D.1    Atlas, L.E.2    Bernard, G.D.3
  • 31
    • 0033710584 scopus 로고    scopus 로고
    • Hidden Markov models for monitoring machining tool-wear
    • Atlas L., Ostendorf M., and Bernard G. Hidden Markov models for monitoring machining tool-wear. Proceedings of ICASSP (2000) 3887-3890
    • (2000) Proceedings of ICASSP , pp. 3887-3890
    • Atlas, L.1    Ostendorf, M.2    Bernard, G.3
  • 33
    • 4544353564 scopus 로고    scopus 로고
    • O. Cetin, M. Ostendorf, Multi-rate hidden Markov models and their application to machine tool-wear classification, in: The 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), 2004, pp. 837-840.
    • O. Cetin, M. Ostendorf, Multi-rate hidden Markov models and their application to machine tool-wear classification, in: The 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), 2004, pp. 837-840.
  • 34
    • 33745355754 scopus 로고    scopus 로고
    • G.V.J. Antonio, A. Juan, Nolazco-Flores, Ruben Morales-Menendez, L. Enrique Sucar, Ciro A. Rodri{dotless}guez, Tool-wear monitoring based on continuous hidden Markov models, in: M. Lazo, A. Sanfeliu (Eds.), CIARP 2005, Lecture Notes in Computer Science, vol. 3773, Springer, Berlin, Heidelberg, 2005, pp. 880-890.
    • G.V.J. Antonio, A. Juan, Nolazco-Flores, Ruben Morales-Menendez, L. Enrique Sucar, Ciro A. Rodri{dotless}guez, Tool-wear monitoring based on continuous hidden Markov models, in: M. Lazo, A. Sanfeliu (Eds.), CIARP 2005, Lecture Notes in Computer Science, vol. 3773, Springer, Berlin, Heidelberg, 2005, pp. 880-890.
  • 35
    • 33748806817 scopus 로고    scopus 로고
    • Tool condition classification using Hidden Markov Model based on fractal analysis of machined surface textures
    • Kassim A.A., Zhu M., and Mannan M.A. Tool condition classification using Hidden Markov Model based on fractal analysis of machined surface textures. Machine Vision and Applications 17 (2006) 327-336
    • (2006) Machine Vision and Applications , vol.17 , pp. 327-336
    • Kassim, A.A.1    Zhu, M.2    Mannan, M.A.3
  • 39
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method?-Answers via model-based cluster analysis
    • Fraley C., and Raftery A.E. How many clusters? Which clustering method?-Answers via model-based cluster analysis. The Computer Journal 41 (1998) 578-588
    • (1998) The Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 42
    • 0029755708 scopus 로고    scopus 로고
    • Feature extraction and assessment using wavelet packets for monitoring of machining process
    • Wu Y., and Du R. Feature extraction and assessment using wavelet packets for monitoring of machining process. Mechanical Systems and Signal Processing 10 1 (1996) 29-53
    • (1996) Mechanical Systems and Signal Processing , vol.10 , Issue.1 , pp. 29-53
    • Wu, Y.1    Du, R.2
  • 44
    • 56249131501 scopus 로고    scopus 로고
    • K. Goebel, W. Yan, Feature Selection for Tool Wear Diagnosis Using Soft Computing Techniques, GE Technical Information Series, 2001CRD011, February 2001.
    • K. Goebel, W. Yan, Feature Selection for Tool Wear Diagnosis Using Soft Computing Techniques, GE Technical Information Series, 2001CRD011, February 2001.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.