메뉴 건너뛰기




Volumn 381, Issue 1, 2011, Pages 146-154

A sufficient condition of viability for fractional differential equations with the Caputo derivative

Author keywords

Fractional derivative; Fractional differential equation; Viability

Indexed keywords


EID: 79955481320     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2011.04.004     Document Type: Article
Times cited : (28)

References (31)
  • 1
    • 67349088414 scopus 로고    scopus 로고
    • Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives
    • Zhang S. Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives. Nonlinear Anal. 2009, 71:2087-2093.
    • (2009) Nonlinear Anal. , vol.71 , pp. 2087-2093
    • Zhang, S.1
  • 2
    • 34247323827 scopus 로고    scopus 로고
    • Fractional differential equations as alternative models to nonlinear differential equations
    • Bonilla B., Rivero M., Rodriguez-Germá L., Trujillo J.J. Fractional differential equations as alternative models to nonlinear differential equations. Appl. Math. Comput. 2007, 187:79-88.
    • (2007) Appl. Math. Comput. , vol.187 , pp. 79-88
    • Bonilla, B.1    Rivero, M.2    Rodriguez-Germá, L.3    Trujillo, J.J.4
  • 3
    • 59849083895 scopus 로고    scopus 로고
    • Integral equations and initial value problems for nonlinear differential equations of fractional order
    • Kosmatov N. Integral equations and initial value problems for nonlinear differential equations of fractional order. Nonlinear Anal. 2009, 70:2521-2529.
    • (2009) Nonlinear Anal. , vol.70 , pp. 2521-2529
    • Kosmatov, N.1
  • 4
    • 73249139676 scopus 로고    scopus 로고
    • On the concept of solution for fractional differential equations with uncertainty
    • Agarwal R.P., Lakshmikantham V., Nieto J.J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 2010, 72:2859-2862.
    • (2010) Nonlinear Anal. , vol.72 , pp. 2859-2862
    • Agarwal, R.P.1    Lakshmikantham, V.2    Nieto, J.J.3
  • 6
    • 77049084247 scopus 로고    scopus 로고
    • Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative
    • Wei Z., Che J. Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative. J. Math. Anal. Appl. 2010, 367:260-272.
    • (2010) J. Math. Anal. Appl. , vol.367 , pp. 260-272
    • Wei, Z.1    Che, J.2
  • 7
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • Diethelm K., Ford N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265:229-248.
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 9
    • 67650163462 scopus 로고    scopus 로고
    • Viability for differential equations driven by fractional Brownian motion
    • Ciotir J., Rascanu A. Viability for differential equations driven by fractional Brownian motion. J. Differential Equations 2009, 247:1505-1528.
    • (2009) J. Differential Equations , vol.247 , pp. 1505-1528
    • Ciotir, J.1    Rascanu, A.2
  • 10
    • 0038771348 scopus 로고    scopus 로고
    • Differential equations driven by fractional Brownian motion
    • Nualart D., Rascanu A. Differential equations driven by fractional Brownian motion. Collect. Math. 2002, 53:55-81.
    • (2002) Collect. Math. , vol.53 , pp. 55-81
    • Nualart, D.1    Rascanu, A.2
  • 11
    • 59249091275 scopus 로고    scopus 로고
    • Existence of convex and non convex local solutions for fractional differential inclusions
    • Ibrahim R.W. Existence of convex and non convex local solutions for fractional differential inclusions. Electron. J. Differential Equations 2009, 18:1-13.
    • (2009) Electron. J. Differential Equations , vol.18 , pp. 1-13
    • Ibrahim, R.W.1
  • 12
    • 17844385541 scopus 로고    scopus 로고
    • Some analytical properties of solutions of differential equations of noninteger order
    • Momani S.M., Hadid S.B., Alawenh Z.M. Some analytical properties of solutions of differential equations of noninteger order. Int. J. Math. Math. Sci. 2004, 13:697-701.
    • (2004) Int. J. Math. Math. Sci. , vol.13 , pp. 697-701
    • Momani, S.M.1    Hadid, S.B.2    Alawenh, Z.M.3
  • 13
    • 70349613923 scopus 로고    scopus 로고
    • Fractional positive linear systems
    • Kaczorek T. Fractional positive linear systems. Kybernetes 2009, 38(7/8):1059-1078.
    • (2009) Kybernetes , vol.38 , Issue.7-8 , pp. 1059-1078
    • Kaczorek, T.1
  • 14
    • 84941480860 scopus 로고
    • Some existence theorems on differential equations of generalized order
    • Al-Bassam M.A. Some existence theorems on differential equations of generalized order. J. Reine Angew. Math. 1965, 218:70-78.
    • (1965) J. Reine Angew. Math. , vol.218 , pp. 70-78
    • Al-Bassam, M.A.1
  • 15
    • 79955482470 scopus 로고    scopus 로고
    • On positive solutions of nonlinear fractional differential equations, in: Proceedings of the 4th International Conference on Dynamical Systems and Differential Equations, Wilmington, NC, USA
    • D. Bugajewska, M. Zima, On positive solutions of nonlinear fractional differential equations, in: Proceedings of the 4th International Conference on Dynamical Systems and Differential Equations, Wilmington, NC, USA, 2002, pp. 141-146.
    • (2002) , pp. 141-146
    • Bugajewska, D.1    Zima, M.2
  • 16
    • 0034670545 scopus 로고    scopus 로고
    • The existence of a positive solution for a nonlinear fractional differential equation
    • Zhang S. The existence of a positive solution for a nonlinear fractional differential equation. J. Math. Anal. Appl. 2000, 252:804-812.
    • (2000) J. Math. Anal. Appl. , vol.252 , pp. 804-812
    • Zhang, S.1
  • 17
    • 36248933572 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equations
    • El-Shahed M. Positive solutions for boundary value problem of nonlinear fractional differential equations. Abstr. Appl. Anal. 2007, 1:1-8.
    • (2007) Abstr. Appl. Anal. , vol.1 , pp. 1-8
    • El-Shahed, M.1
  • 18
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problems of nonlinear fractional differential equations
    • Bai Z., Lü H. Positive solutions for boundary value problems of nonlinear fractional differential equations. J. Math. Anal. Appl. 2005, 311(2):495-505.
    • (2005) J. Math. Anal. Appl. , vol.311 , Issue.2 , pp. 495-505
    • Bai, Z.1    Lü, H.2
  • 19
    • 0000899238 scopus 로고
    • Uber die lage der intergralkurven gewohnlicher differentialgleichung
    • Nagumo M. Uber die lage der intergralkurven gewohnlicher differentialgleichung. Proc. Phys. Math. Soc. Japan 1942, 24:551-559.
    • (1942) Proc. Phys. Math. Soc. Japan , vol.24 , pp. 551-559
    • Nagumo, M.1
  • 21
    • 38149008485 scopus 로고
    • Multivalued differential equations on graphs
    • Bothe D. Multivalued differential equations on graphs. J. Nonlinear Anal. TAMS 1992, 18:245-252.
    • (1992) J. Nonlinear Anal. TAMS , vol.18 , pp. 245-252
    • Bothe, D.1
  • 22
    • 0000311623 scopus 로고
    • Measurable viability theorems and the Hamilton-Jacobi-Bellman equation
    • Frankowska H., Plaskacz S., Rzezuchowski T. Measurable viability theorems and the Hamilton-Jacobi-Bellman equation. J. Differential Equations 1995, 116:265-305.
    • (1995) J. Differential Equations , vol.116 , pp. 265-305
    • Frankowska, H.1    Plaskacz, S.2    Rzezuchowski, T.3
  • 23
    • 79955485149 scopus 로고    scopus 로고
    • Viability and invariance for differential games with applications to Hamilton-Jacobi-Isaacs equations
    • Polish Acad. Sci. Topology in Nonlinear Analysis
    • Cardaliaguet P., Plaskacz S. Viability and invariance for differential games with applications to Hamilton-Jacobi-Isaacs equations. Banach Center Publ. 1996, vol. 35:149-158. Polish Acad. Sci.
    • (1996) Banach Center Publ. , vol.35 , pp. 149-158
    • Cardaliaguet, P.1    Plaskacz, S.2
  • 24
    • 0000901724 scopus 로고
    • Frontieres de domaines d'invariance et de viabilité pour des inclusions différentielles avec contraintes
    • Quincampoix M. Frontieres de domaines d'invariance et de viabilité pour des inclusions différentielles avec contraintes. C. R. Math. Acad. Sci. Paris Sér. I 1990, 311(7):411-416.
    • (1990) C. R. Math. Acad. Sci. Paris Sér. I , vol.311 , Issue.7 , pp. 411-416
    • Quincampoix, M.1
  • 26
    • 77956684069 scopus 로고    scopus 로고
    • Theory and Applications of Fractional Differential Equations
    • Elsevier Science B.V., Amsterdam
    • Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. North-Holland Math. Stud. 2006, vol. 204. Elsevier Science B.V., Amsterdam.
    • (2006) North-Holland Math. Stud. , vol.204
    • Kilbas, A.A.1    Srivastava, H.M.2    Trujillo, J.J.3
  • 27
    • 0003244044 scopus 로고    scopus 로고
    • Fractional Differential Equations
    • Academic Press, San Diego
    • Podlubny I. Fractional Differential Equations. Math. Sci. Eng. 1999, vol. 198. Academic Press, San Diego.
    • (1999) Math. Sci. Eng. , vol.198
    • Podlubny, I.1
  • 30
    • 45849137105 scopus 로고    scopus 로고
    • Fractional positive continuous-time linear systems and their reachability
    • Kaczorek T. Fractional positive continuous-time linear systems and their reachability. Int. J. Appl. Math. Comput. Sci. 2008, 18(2):223-228.
    • (2008) Int. J. Appl. Math. Comput. Sci. , vol.18 , Issue.2 , pp. 223-228
    • Kaczorek, T.1
  • 31
    • 64149086305 scopus 로고    scopus 로고
    • Reachability of cone fractional continuous-time linear systems
    • Kaczorek T. Reachability of cone fractional continuous-time linear systems. Int. J. Appl. Math. Comput. Sci. 2009, 19(1):89-93.
    • (2009) Int. J. Appl. Math. Comput. Sci. , vol.19 , Issue.1 , pp. 89-93
    • Kaczorek, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.