메뉴 건너뛰기




Volumn 235, Issue 12, 2011, Pages 3502-3514

On the convergence of spline collocation methods for solving fractional differential equations

Author keywords

Caputo derivative; Convergence analysis; Fractional differential equation; Graded grid; Spline collocation method; Volterra integral equation

Indexed keywords

CAPUTO DERIVATIVES; CONVERGENCE ANALYSIS; FRACTIONAL DIFFERENTIAL EQUATIONS; GRADED GRID; SPLINE COLLOCATION METHOD; VOLTERRA INTEGRAL EQUATIONS;

EID: 79953828683     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2010.10.054     Document Type: Article
Times cited : (77)

References (28)
  • 2
    • 0035382421 scopus 로고    scopus 로고
    • Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels
    • H. Brunner, A. Pedas, and G. Vainikko Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels SIAM J. Numer. Anal. 39 2001 957 982
    • (2001) SIAM J. Numer. Anal. , vol.39 , pp. 957-982
    • Brunner, H.1    Pedas, A.2    Vainikko, G.3
  • 5
    • 0348158242 scopus 로고    scopus 로고
    • mE methods
    • mE methods Computing 71 2003 305 319
    • (2003) Computing , vol.71 , pp. 305-319
    • Diethelm, K.1
  • 6
    • 0012899160 scopus 로고    scopus 로고
    • Numerical solution of the BagleyTorvik equation
    • K. Diethelm, and N.J. Ford Numerical solution of the BagleyTorvik equation BIT 42 2002 490 507
    • (2002) BIT , vol.42 , pp. 490-507
    • Diethelm, K.1    Ford, N.J.2
  • 7
    • 3042709180 scopus 로고    scopus 로고
    • Multi-order fractional differential equations and their numerical solution
    • K. Diethelm, and N.J. Ford Multi-order fractional differential equations and their numerical solution Appl. Math. Comput. 154 2004 621 640
    • (2004) Appl. Math. Comput. , vol.154 , pp. 621-640
    • Diethelm, K.1    Ford, N.J.2
  • 8
    • 0037113861 scopus 로고    scopus 로고
    • The numerical solution of linear multi-term fractional differential equations: Systems of equations
    • DOI 10.1016/S0377-0427(02)00558-7, PII S0377042702005587
    • J.T. Edwards, N.J. Ford, and A.C. Simpson The numerical solution of linear multi-term fractional differential equations: systems of equations J. Comput. Appl. Math. 148 2002 401 418 (Pubitemid 36409200)
    • (2002) Journal of Computational and Applied Mathematics , vol.148 , Issue.2 , pp. 401-418
    • Edwards, J.T.1    Ford, N.J.2    Simpson, C.A.3
  • 9
    • 9744276851 scopus 로고    scopus 로고
    • Numerical methods for multi-term fractional (arbitrary) orders differential equations
    • A.E.M. El-Mesiry, A.M.A. El-Sayed, and H.A.A. El-Saka Numerical methods for multi-term fractional (arbitrary) orders differential equations Appl. Math. Comput. 160 2005 683 699
    • (2005) Appl. Math. Comput. , vol.160 , pp. 683-699
    • El-Mesiry, A.E.M.1    El-Sayed, A.M.A.2    El-Saka, H.A.A.3
  • 10
    • 67349259080 scopus 로고    scopus 로고
    • Systems-based decomposition schemes for approximate solution of multi-term fractional differential equations
    • N.J. Ford, and J.A. Connoly Systems-based decomposition schemes for approximate solution of multi-term fractional differential equations J. Comput. Appl. Math. 229 2009 382 391
    • (2009) J. Comput. Appl. Math. , vol.229 , pp. 382-391
    • Ford, N.J.1    Connoly, J.A.2
  • 11
    • 67349208958 scopus 로고    scopus 로고
    • On some explicit Adams multistep methods for fractional differential equations
    • R. Garrappa On some explicit Adams multistep methods for fractional differential equations J. Comput. Appl. Math. 229 2009 392 399
    • (2009) J. Comput. Appl. Math. , vol.229 , pp. 392-399
    • Garrappa, R.1
  • 12
    • 68049124906 scopus 로고    scopus 로고
    • Numerical solution of multi-term fractional differential equations
    • J.T. Katsikadelis Numerical solution of multi-term fractional differential equations Z. Angew. Math. Math. 89 2009 593 608
    • (2009) Z. Angew. Math. Math. , vol.89 , pp. 593-608
    • Katsikadelis, J.T.1
  • 14
    • 84966227123 scopus 로고
    • Fractional linear multistep methods for Abel-Volterra integral equations of the second kind
    • C. Lubich Fractional linear multistep methods for Abel-Volterra integral equations of the second kind Math. Comp. 45 1985 463 469
    • (1985) Math. Comp. , vol.45 , pp. 463-469
    • Lubich, C.1
  • 15
    • 75149147525 scopus 로고    scopus 로고
    • The solution of the BagleyTorvik equation with the generalized Taylor collocation method
    • Y. enesiz, Y. Keskin, and A. Kurnaz The solution of the BagleyTorvik equation with the generalized Taylor collocation method J. Franklin Inst. 347 2010 452 466
    • (2010) J. Franklin Inst. , vol.347 , pp. 452-466
    • Enesiz, Y.1    Keskin, Y.2    Kurnaz, A.3
  • 16
    • 34248373867 scopus 로고    scopus 로고
    • Solving a multi-order fractional differential equation using adomian decomposition
    • DOI 10.1016/j.amc.2006.11.129, PII S0096300306016274
    • V. Daftardar-Gejji, and H. Jafari Solving a multi-order fractional differential equation using Adomian decomposition Appl. Math. Comput. 189 2007 541 548 (Pubitemid 46734260)
    • (2007) Applied Mathematics and Computation , vol.189 , Issue.1 , pp. 541-548
    • Daftardar-Gejji, V.1    Jafari, H.2
  • 17
    • 33748425302 scopus 로고    scopus 로고
    • Numerical comparison of methods for solving linear differential equations of fractional order
    • DOI 10.1016/j.chaos.2005.10.068, PII S0960077905010374
    • S. Momani, and Z. Obibat Numerical comparison of methods for solving linear differential equations of fractional order Chaos Solitons Fractals 31 2007 1248 1255 (Pubitemid 44345225)
    • (2007) Chaos, Solitons and Fractals , vol.31 , Issue.5 , pp. 1248-1255
    • Momani, S.1    Odibat, Z.2
  • 18
    • 0344774198 scopus 로고    scopus 로고
    • Numerical treatment of differential equations of fractional order
    • L. Blank Numerical treatment of differential equations of fractional order Nonlinear World 4 1997 473 491
    • (1997) Nonlinear World , vol.4 , pp. 473-491
    • Blank, L.1
  • 19
    • 4043168480 scopus 로고    scopus 로고
    • Mixed collocation for fractional differential equations
    • F. Dubois, and S. Mengu Mixed collocation for fractional differential equations Numer. Algorithms 34 2003 303 311 (Pubitemid 39063573)
    • (2003) Numerical Algorithms , vol.34 , Issue.2-4 , pp. 303-311
    • Dubois, F.1    Mengue, S.2
  • 20
    • 33644585616 scopus 로고    scopus 로고
    • Numerical solution of semidifferential equations by collocation method
    • E. Rawashdeh Numerical solution of semidifferential equations by collocation method Appl. Math. Comput. 174 2006 869 876
    • (2006) Appl. Math. Comput. , vol.174 , pp. 869-876
    • Rawashdeh, E.1
  • 21
    • 33646161468 scopus 로고    scopus 로고
    • Numerical solution of fractional integro-differential equations by collocation method
    • E. Rawashdeh Numerical solution of fractional integro-differential equations by collocation method Appl. Math. Comput. 176 2006 1 6
    • (2006) Appl. Math. Comput. , vol.176 , pp. 1-6
    • Rawashdeh, E.1
  • 22
    • 67649224114 scopus 로고    scopus 로고
    • Solving fractional integral equations by the Haar wavelet method
    • Lepik Solving fractional integral equations by the Haar wavelet method Appl. Math. Comput. 214 2009 468 478
    • (2009) Appl. Math. Comput. , vol.214 , pp. 468-478
    • Lepik1
  • 23
    • 0012707577 scopus 로고    scopus 로고
    • The Numerical Solution of Integral Equations of the Second Kind
    • Cambridge University Press Cambridge, UK
    • K.E. Atkinson The Numerical Solution of Integral Equations of the Second Kind Cambridge Monographs on Applied and Computational Mathematics vol. 4 1997 Cambridge University Press Cambridge, UK
    • (1997) Cambridge Monographs on Applied and Computational Mathematics , vol.4
    • Atkinson, K.E.1
  • 24
    • 33646142218 scopus 로고    scopus 로고
    • Collocation Methods for Volterra Integral and Related Functional Equations
    • Cambridge University Press Cambridge, UK
    • H. Brunner Collocation Methods for Volterra Integral and Related Functional Equations Cambridge Monographs on Applied and Computational Mathematics vol. 15 2004 Cambridge University Press Cambridge, UK
    • (2004) Cambridge Monographs on Applied and Computational Mathematics , vol.15
    • Brunner, H.1
  • 25
    • 33746833310 scopus 로고    scopus 로고
    • Spline collocation method for integro-differential equations with weakly singular kernels
    • DOI 10.1016/j.cam.2005.07.035, PII S037704270500659X
    • A. Pedas, and E. Tamme Spline collocation method for integro-differential equations with weakly singular kernels J. Comput. Appl. Math. 197 2006 253 269 (Pubitemid 44176254)
    • (2006) Journal of Computational and Applied Mathematics , vol.197 , Issue.1 , pp. 253-269
    • Pedas, A.1    Tamme, E.2
  • 26
    • 0040861135 scopus 로고
    • Multidimensional Weakly Singular Integral Equations
    • Springer Berlin
    • G. Vainikko Multidimensional Weakly Singular Integral Equations Lecture Notes in Mathematics vol. 1549 1993 Springer Berlin
    • (1993) Lecture Notes in Mathematics , vol.1549
    • Vainikko, G.1
  • 27
    • 37549001375 scopus 로고    scopus 로고
    • Discrete Galerkin method for Fredholm integro-differential equations with weakly singular kernels
    • A. Pedas, and E. Tamme Discrete Galerkin method for Fredholm integro-differential equations with weakly singular kernels J. Comput. Appl. Math. 213 2006 111 126
    • (2006) J. Comput. Appl. Math. , vol.213 , pp. 111-126
    • Pedas, A.1    Tamme, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.