-
1
-
-
10344238128
-
Adomian Decomposition: A tool for solving a system of fractional differential equations
-
Daftardar-Gejji V., Jafari H. Adomian Decomposition: A tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 2005, 301:508-518.
-
(2005)
J. Math. Anal. Appl.
, vol.301
, pp. 508-518
-
-
Daftardar-Gejji, V.1
Jafari, H.2
-
2
-
-
34248373867
-
Solving a multi-order fractional differential equation using adomian decomposition
-
Daftardar-Gejji V., Jafari H. Solving a multi-order fractional differential equation using adomian decomposition. J. Math. Anal. Appl. 2007, 189:541-548.
-
(2007)
J. Math. Anal. Appl.
, vol.189
, pp. 541-548
-
-
Daftardar-Gejji, V.1
Jafari, H.2
-
3
-
-
0001618393
-
An algorithm for the numerical solution of differential equations of fractional order
-
Diethelm K. An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 1997, 5:1-6.
-
(1997)
Electron. Trans. Numer. Anal.
, vol.5
, pp. 1-6
-
-
Diethelm, K.1
-
4
-
-
0012899160
-
Numerical solution of the Bagley-Torvik equation
-
Diethelm K., Ford N.J. Numerical solution of the Bagley-Torvik equation. BIT 2002, 42:490-507.
-
(2002)
BIT
, vol.42
, pp. 490-507
-
-
Diethelm, K.1
Ford, N.J.2
-
5
-
-
3042709180
-
Multi-order fractional differential equations and their numerical solution
-
Diethelm K., Ford N.J. Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 2004, 154:621-640.
-
(2004)
Appl. Math. Comput.
, vol.154
, pp. 621-640
-
-
Diethelm, K.1
Ford, N.J.2
-
6
-
-
0037113861
-
The numerical solution of linear multi-term fractional differential equations: systems of equations
-
Edwards J.T., Ford N.J., Simpson A.C. The numerical solution of linear multi-term fractional differential equations: systems of equations. J. Comput. Appl. Math. 2002, 148:401-418.
-
(2002)
J. Comput. Appl. Math.
, vol.148
, pp. 401-418
-
-
Edwards, J.T.1
Ford, N.J.2
Simpson, A.C.3
-
7
-
-
33748959199
-
Solving linear and non-linear fractional diffusion and wave equations by Adomian decomposition
-
Jafari H., Daftardar-Gejji V. Solving linear and non-linear fractional diffusion and wave equations by Adomian decomposition. Appl. Math. Comput. 2006, 180:488-497.
-
(2006)
Appl. Math. Comput.
, vol.180
, pp. 488-497
-
-
Jafari, H.1
Daftardar-Gejji, V.2
-
8
-
-
56049100715
-
Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation
-
Jafari H., Seifi S. Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Commun. Non-linear Sci. Numer. Simulat. 2009, 14:2006-2012.
-
(2009)
Commun. Non-linear Sci. Numer. Simulat.
, vol.14
, pp. 2006-2012
-
-
Jafari, H.1
Seifi, S.2
-
9
-
-
56049106098
-
Solving a system of nonlinear fractional partial differential equations using homotopy analysis method
-
Jafari H., Seifi S. Solving a system of nonlinear fractional partial differential equations using homotopy analysis method. Commun. Non-linear Sci. Numer. Simulat. 2009, 14:1962-1969.
-
(2009)
Commun. Non-linear Sci. Numer. Simulat.
, vol.14
, pp. 1962-1969
-
-
Jafari, H.1
Seifi, S.2
-
10
-
-
0141927321
-
On the explicit analytic solutions of an Oldroyd 6-constant fluid
-
Hayat T., Khan M., Ayub M. On the explicit analytic solutions of an Oldroyd 6-constant fluid. Int. J. Eng. Sci. 2004, 42:12335.
-
(2004)
Int. J. Eng. Sci.
, vol.42
, pp. 12335
-
-
Hayat, T.1
Khan, M.2
Ayub, M.3
-
11
-
-
80052480877
-
-
Global and causal solutions of fractional differential equations. In: Transform Methods and Special Functions: Varna96, Proceedings of 2nd International Workshop (SCTP), Singapore,
-
Kemple, S., Beyer, H., 1997. Global and causal solutions of fractional differential equations. In: Transform Methods and Special Functions: Varna96, Proceedings of 2nd International Workshop (SCTP), Singapore, pp. 210-216.
-
(1997)
, pp. 210-216
-
-
Kemple, S.1
Beyer, H.2
-
12
-
-
80052443019
-
-
The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. Thesis, Shanghai Jiao Tong University.
-
Liao, S.J., 1992. The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. Thesis, Shanghai Jiao Tong University.
-
(1992)
-
-
Liao, S.J.1
-
13
-
-
0141961626
-
On the homotopy analysis method for nonlinear problems
-
Liao S.J. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 2004, 147:499-513.
-
(2004)
Appl. Math. Comput.
, vol.147
, pp. 499-513
-
-
Liao, S.J.1
-
15
-
-
0012659515
-
An operational method for solving fractional differential equations with the Caputo derivatives
-
Luchko Y., Gorenflo R. An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnamica 1999, 24(2):207-233.
-
(1999)
Acta Math. Vietnamica
, vol.24
, Issue.2
, pp. 207-233
-
-
Luchko, Y.1
Gorenflo, R.2
-
16
-
-
0001869174
-
On the initial value problem for the fractional diffusion-wave equation
-
World Scientific, Singapore, S. Rionero, T. Ruggeeri (Eds.)
-
Mainardi F. On the initial value problem for the fractional diffusion-wave equation. Waves and stability in continuous media 1994, 246-251. World Scientific, Singapore. S. Rionero, T. Ruggeeri (Eds.).
-
(1994)
Waves and stability in continuous media
, pp. 246-251
-
-
Mainardi, F.1
-
17
-
-
47849126401
-
A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor's formula
-
Momani S., Odibat Z. A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor's formula. J. Comput. Appl. Math. 2008, 220(1-2):85-95.
-
(2008)
J. Comput. Appl. Math.
, vol.220
, Issue.1-2
, pp. 85-95
-
-
Momani, S.1
Odibat, Z.2
-
18
-
-
0003797958
-
-
Academic Press, SanDiego
-
Podlubny I. Fractional Differential Equations, An introduction to fractional derivatives, fractional differential equations, some methods of their solution and some of their applications 1999, Academic Press, SanDiego.
-
(1999)
Fractional Differential Equations, An introduction to fractional derivatives, fractional differential equations, some methods of their solution and some of their applications
-
-
Podlubny, I.1
|