-
1
-
-
23644455602
-
The development of fractional calculus 16951900
-
B. Ross The development of fractional calculus 16951900 Hist. Math. 4 1 1977 75 89
-
(1977)
Hist. Math.
, vol.4
, Issue.1
, pp. 75-89
-
-
Ross, B.1
-
5
-
-
85065556461
-
Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent result
-
52 pages
-
Y.A. Rossikhin, and M.V. Shitikova Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent result Appl. Mech. Rev. 63 2010 52 pages
-
(2010)
Appl. Mech. Rev.
, vol.63
-
-
Rossikhin, Y.A.1
Shitikova, M.V.2
-
6
-
-
74149086307
-
Fractional models, non-locality, and complex systems
-
Yu. Luchko, M. Rivero, J.J. Trujillo, and M.P. Velasco Fractional models, non-locality, and complex systems Comput. Math. Appl. 59 3 2010 1048 1056
-
(2010)
Comput. Math. Appl.
, vol.59
, Issue.3
, pp. 1048-1056
-
-
Luchko, Yu.1
Rivero, M.2
Trujillo, J.J.3
Velasco, M.P.4
-
9
-
-
33646341532
-
Comparison of numerical methods for fractional differential equations
-
DOI 10.3934/cpaa.2006.5.289
-
N.J. Ford, and J.A. Connolly Comparison of numerical methods for fractional differential equations Commun. Pure Appl. Anal. 5 2 2006 289 307 (Pubitemid 43671806)
-
(2006)
Communications on Pure and Applied Analysis
, vol.5
, Issue.2
, pp. 289-307
-
-
Ford, N.J.1
Connolly, J.A.2
-
10
-
-
26444438049
-
Pitfalls in fast numerical solvers for fractional differential equations
-
DOI 10.1016/j.cam.2005.03.023, PII S0377042705001287
-
K. Diethelm, J.M. Ford, N.J. Ford, and M. Weilbeer Pitfalls in fast numerical solvers for fractional differential equations J. Comput. Appl. Math. 186 2 2006 482 503 (Pubitemid 41433596)
-
(2006)
Journal of Computational and Applied Mathematics
, vol.186
, Issue.2
, pp. 482-503
-
-
Diethelm, K.1
Ford, J.M.2
Ford, N.J.3
Weilbeer, M.4
-
11
-
-
84885821361
-
Comparison of five numerical schemes for fractional differential equations
-
Springer-Verlag Dordrecht
-
O.P. Agrawal, and P. Kumar Comparison of five numerical schemes for fractional differential equations Advances in Fractional Calculus 2007 Springer-Verlag Dordrecht 43 60
-
(2007)
Advances in Fractional Calculus
, pp. 43-60
-
-
Agrawal, O.P.1
Kumar, P.2
-
12
-
-
10644238068
-
Algorithms for the fractional calculus: A selection of numerical methods
-
DOI 10.1016/j.cma.2004.06.006, PII S0045782504002981
-
K. Diethelm, N.J. Ford, A.D. Freed, and Yu. Luchko Algorithms for the fractional calculus: a selection of numerical methods Comput. Methods Appl. Mech. Engrg. 194 2005 743 773 (Pubitemid 39660444)
-
(2005)
Computer Methods in Applied Mechanics and Engineering
, vol.194
, Issue.6-8
, pp. 743-773
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
Luchko, Yu.4
-
13
-
-
79953684270
-
A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations
-
S. Esmaeili, and M. Shamsi A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations Commun. Nonlinear Sci. Numer. Simul. 16 9 2011 3646 3654
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, Issue.9
, pp. 3646-3654
-
-
Esmaeili, S.1
Shamsi, M.2
-
14
-
-
77957868556
-
On accurate product integration rules for linear fractional differential equations
-
R. Garrappa, and M. Popolizio On accurate product integration rules for linear fractional differential equations J. Comput. Appl. Math. 235 5 2011 1085 1097
-
(2011)
J. Comput. Appl. Math.
, vol.235
, Issue.5
, pp. 1085-1097
-
-
Garrappa, R.1
Popolizio, M.2
-
15
-
-
78649445937
-
An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis
-
F. Ghoreishi, and S. Yazdani An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis Comput. Math. Appl. 61 1 2011 30 43
-
(2011)
Comput. Math. Appl.
, vol.61
, Issue.1
, pp. 30-43
-
-
Ghoreishi, F.1
Yazdani, S.2
-
16
-
-
65049090377
-
Numerical algorithm based on Adomian decomposition for fractional differential equations
-
C. Li, and Y. Wang Numerical algorithm based on Adomian decomposition for fractional differential equations Comput. Math. Appl. 57 10 2009 1672 1681
-
(2009)
Comput. Math. Appl.
, vol.57
, Issue.10
, pp. 1672-1681
-
-
Li, C.1
Wang, Y.2
-
17
-
-
0000717432
-
Discretized fractional calculus
-
C. Lubich Discretized fractional calculus SIAM J. Math. Anal. 17 3 1986 704 719
-
(1986)
SIAM J. Math. Anal.
, vol.17
, Issue.3
, pp. 704-719
-
-
Lubich, C.1
-
18
-
-
0012659515
-
An operational method for solving fractional differential equations with the Caputo derivatives
-
Yu. Luchko, and R. Gorenflo An operational method for solving fractional differential equations with the Caputo derivatives Acta Math. Vietnam. 24 2 1999 207 233
-
(1999)
Acta Math. Vietnam.
, vol.24
, Issue.2
, pp. 207-233
-
-
Luchko, Yu.1
Gorenflo, R.2
-
19
-
-
74249095517
-
A new operational matrix for solving fractional-order differential equations
-
A. Saadatmandi, and M. Dehghan A new operational matrix for solving fractional-order differential equations Comput. Math. Appl. 59 3 2010 1326 1336
-
(2010)
Comput. Math. Appl.
, vol.59
, Issue.3
, pp. 1326-1336
-
-
Saadatmandi, A.1
Dehghan, M.2
-
20
-
-
77958536189
-
A spacetime spectral method for the time fractional diffusion equation
-
X. Li, and C. Xu A spacetime spectral method for the time fractional diffusion equation SIAM J. Numer. Anal. 47 3 2009 2108 2131
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, Issue.3
, pp. 2108-2131
-
-
Li, X.1
Xu, C.2
-
24
-
-
46849121402
-
Numerical solutions of the generalized KuramotoSivashinsky equation by Chebyshev spectral collocation methods
-
A.H. Khater, and R.S. Temsah Numerical solutions of the generalized KuramotoSivashinsky equation by Chebyshev spectral collocation methods Comput. Math. Appl. 56 6 2008 1465 1472
-
(2008)
Comput. Math. Appl.
, vol.56
, Issue.6
, pp. 1465-1472
-
-
Khater, A.H.1
Temsah, R.S.2
-
25
-
-
84966261343
-
Mntz systems and orthogonal MntzLegendre polynomials
-
P. Borwein, T. Erdélyi, and J. Zhang Mntz systems and orthogonal MntzLegendre polynomials Trans. Amer. Math. Soc. 342 2 1994 523 542
-
(1994)
Trans. Amer. Math. Soc.
, vol.342
, Issue.2
, pp. 523-542
-
-
Borwein, P.1
Erdélyi, T.2
Zhang, J.3
-
27
-
-
33646547107
-
Mntz orthogonal polynomials and their numerical evaluation
-
Internat. Ser. Numer. Math. Birkhuser Basel
-
G.V. Milovanovi Mntz orthogonal polynomials and their numerical evaluation Applications and Computation of Orthogonal Polynomials Internat. Ser. Numer. Math. vol. 131 1999 Birkhuser Basel 179 194
-
(1999)
Applications and Computation of Orthogonal Polynomials
, vol.131
, pp. 179-194
-
-
Milovanovi, G.V.1
-
30
-
-
0001505159
-
On generating orthogonal polynomials
-
W. Gautschi On generating orthogonal polynomials SIAM J. Sci. Stat. Comput. 3 3 1982 289 317
-
(1982)
SIAM J. Sci. Stat. Comput.
, vol.3
, Issue.3
, pp. 289-317
-
-
Gautschi, W.1
-
31
-
-
0000223746
-
Calculation of Gauss quadrature rules
-
G.H. Golub, and J.H. Welsch Calculation of Gauss quadrature rules Math. Comp. 23 1969 221 230
-
(1969)
Math. Comp.
, vol.23
, pp. 221-230
-
-
Golub, G.H.1
Welsch, J.H.2
-
33
-
-
26044462986
-
Herman Mntz: A mathematician's odyssey
-
E.L. Ortiz, and A. Pinkus Herman Mntz: a mathematician's odyssey Math. Intelligencer 27 1 2005 22 31
-
(2005)
Math. Intelligencer
, vol.27
, Issue.1
, pp. 22-31
-
-
Ortiz, E.L.1
Pinkus, A.2
-
34
-
-
0004234486
-
-
AMS Chelsea Publishing Providence, RI Reprint of the second (1982) edition
-
E.W. Cheney Introduction to Approximation Theory 1998 AMS Chelsea Publishing Providence, RI Reprint of the second (1982) edition
-
(1998)
Introduction to Approximation Theory
-
-
Cheney, E.W.1
-
35
-
-
2942584456
-
Computation of the Mittag-Leffler function and its derivatives
-
R. Gorenflo, J. Loutchko, and Yu. Luchko Computation of the Mittag-Leffler function and its derivatives Fract. Calc. Appl. Anal. 5 2002 491 518
-
(2002)
Fract. Calc. Appl. Anal.
, vol.5
, pp. 491-518
-
-
Gorenflo, R.1
Loutchko, J.2
Luchko, Yu.3
-
36
-
-
76449114769
-
The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus
-
V. Kiryakova The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus Comput. Math. Appl. 59 5 2010 1885 1895
-
(2010)
Comput. Math. Appl.
, vol.59
, Issue.5
, pp. 1885-1895
-
-
Kiryakova, V.1
-
38
-
-
55349106156
-
Numerical algorithm for calculating the generalized Mittag-Leffler function
-
H. Seybold, and R. Hilfer Numerical algorithm for calculating the generalized Mittag-Leffler function SIAM J. Numer. Anal. 47 1 2008 69 88
-
(2008)
SIAM J. Numer. Anal.
, vol.47
, Issue.1
, pp. 69-88
-
-
Seybold, H.1
Hilfer, R.2
-
39
-
-
35348869861
-
Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order
-
DOI 10.1016/j.chaos.2006.06.041, PII S0960077906005972
-
Z. Odibat, and S. Momani Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order Chaos Solitons Fractals 36 1 2008 167 174 (Pubitemid 47576648)
-
(2008)
Chaos, Solitons and Fractals
, vol.36
, Issue.1
, pp. 167-174
-
-
Odibat, Z.1
Momani, S.2
|