-
1
-
-
28044468843
-
Finite difference approximations for two-sided space-fractional partial differential equations
-
Meerschaert M.M., and Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56 (2006) 80-90
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 80-90
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
2
-
-
33845628108
-
A second-order accurate numerical method for the two-dimensional fractional diffusion equation
-
Tadjeran C., and Meerschaert M.M. A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220 (2007) 813-823
-
(2007)
J. Comput. Phys.
, vol.220
, pp. 813-823
-
-
Tadjeran, C.1
Meerschaert, M.M.2
-
3
-
-
0345448323
-
Numerical methods for the solution of partial differential equations of fractional order
-
Lynch V.E., Carreras B.A., del-Castillo-Negrete D., Ferriera-Mejias K.M., and Hicks H.R. Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192 (2003) 406-421
-
(2003)
J. Comput. Phys.
, vol.192
, pp. 406-421
-
-
Lynch, V.E.1
Carreras, B.A.2
del-Castillo-Negrete, D.3
Ferriera-Mejias, K.M.4
Hicks, H.R.5
-
4
-
-
12244291039
-
Numerical solutions for systems of fractional differential equations by the decomposition method
-
Momani S., and Al-Khaled K. Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput. 162 3 (2005) 1351-1365
-
(2005)
Appl. Math. Comput.
, vol.162
, Issue.3
, pp. 1351-1365
-
-
Momani, S.1
Al-Khaled, K.2
-
5
-
-
24144494623
-
An explicit and numerical solutions of the fractional KdV equation
-
Momani S. An explicit and numerical solutions of the fractional KdV equation. Math. Comput. Simul. 70 2 (2005) 110-118
-
(2005)
Math. Comput. Simul.
, vol.70
, Issue.2
, pp. 110-118
-
-
Momani, S.1
-
6
-
-
27744514614
-
Non-perturbative analytical solutions of the space- and time-fractional Burgers equations
-
Momani S. Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos Soliton. Fract. 28 4 (2006) 930-937
-
(2006)
Chaos Soliton. Fract.
, vol.28
, Issue.4
, pp. 930-937
-
-
Momani, S.1
-
7
-
-
33744981446
-
Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method
-
Momani S., and Odibat Z. Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177 (2006) 488-494
-
(2006)
Appl. Math. Comput.
, vol.177
, pp. 488-494
-
-
Momani, S.1
Odibat, Z.2
-
8
-
-
33749512364
-
Approximate solutions for boundary value problems of time-fractional wave equation
-
Odibat Z., and Momani S. Approximate solutions for boundary value problems of time-fractional wave equation. Appl. Math. Comput. 181 (2006) 1351-1358
-
(2006)
Appl. Math. Comput.
, vol.181
, pp. 1351-1358
-
-
Odibat, Z.1
Momani, S.2
-
9
-
-
30344464250
-
Application of variational iteration method to nonlinear differential equations of fractional order
-
Odibat Z., and Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlin. Sci. Numer. Simul. 7 1 (2006) 27-34
-
(2006)
Int. J. Nonlin. Sci. Numer. Simul.
, vol.7
, Issue.1
, pp. 27-34
-
-
Odibat, Z.1
Momani, S.2
-
10
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
Momani S., and Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Soliton. Fract. 31 5 (2007) 1248-1255
-
(2007)
Chaos Soliton. Fract.
, vol.31
, Issue.5
, pp. 1248-1255
-
-
Momani, S.1
Odibat, Z.2
-
11
-
-
34250661428
-
Numerical approach to differential equations of fractional order
-
Momani S., and Odibat Z. Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207 1 (2007) 96-110
-
(2007)
J. Comput. Appl. Math.
, vol.207
, Issue.1
, pp. 96-110
-
-
Momani, S.1
Odibat, Z.2
-
12
-
-
34548384362
-
Numerical methods for solving nonlinear partial differential equations of fractional order
-
Odibat Z., and Momani S. Numerical methods for solving nonlinear partial differential equations of fractional order. Appl. Math. model. 32 1 (2008) 28-39
-
(2008)
Appl. Math. model.
, vol.32
, Issue.1
, pp. 28-39
-
-
Odibat, Z.1
Momani, S.2
-
13
-
-
35348869861
-
Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order
-
Odibat Z., and Momani S. Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos Soliton. Fract. 36 1 (2008) 167-174
-
(2008)
Chaos Soliton. Fract.
, vol.36
, Issue.1
, pp. 167-174
-
-
Odibat, Z.1
Momani, S.2
-
14
-
-
34748865972
-
Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations
-
Momani S., and Odibat Z. Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Comput. Math. Appl. 54 7-8 (2007) 910-919
-
(2007)
Comput. Math. Appl.
, vol.54
, Issue.7-8
, pp. 910-919
-
-
Momani, S.1
Odibat, Z.2
-
15
-
-
34247395044
-
Homotopy perturbation method for nonlinear partial differential equations of fractional order
-
Momani S., and Odibat Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365 5-6 (2007) 345-350
-
(2007)
Phys. Lett. A
, vol.365
, Issue.5-6
, pp. 345-350
-
-
Momani, S.1
Odibat, Z.2
-
16
-
-
65449158498
-
The multistage homotopy perturbation method: a powerful scheme for handling the Lorenz system
-
Chowdhury M.S., Hashim I., and Momani S. The multistage homotopy perturbation method: a powerful scheme for handling the Lorenz system. Chaos Soliton. Fract. 40 4 (2009) 1929-1937
-
(2009)
Chaos Soliton. Fract.
, vol.40
, Issue.4
, pp. 1929-1937
-
-
Chowdhury, M.S.1
Hashim, I.2
Momani, S.3
-
17
-
-
39149140685
-
Application of generalized differential transform method to multi-order fractional differential equations
-
Erturk V., Momani S., and Odibat Z. Application of generalized differential transform method to multi-order fractional differential equations. Comm. Nonlin. Sci. Numer. Simul. 13 8 (2008) 1642-1654
-
(2008)
Comm. Nonlin. Sci. Numer. Simul.
, vol.13
, Issue.8
, pp. 1642-1654
-
-
Erturk, V.1
Momani, S.2
Odibat, Z.3
-
18
-
-
36549063424
-
Generalized differential transform method for linear partial differential equations of fractional order
-
Odibat Z., and Momani S. Generalized differential transform method for linear partial differential equations of fractional order. Appl. Math. Lett. 21 2 (2008) 194-199
-
(2008)
Appl. Math. Lett.
, vol.21
, Issue.2
, pp. 194-199
-
-
Odibat, Z.1
Momani, S.2
-
19
-
-
35349007529
-
Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation
-
Momani S., Odibat Z., and Erturk V. Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. Phys. Lett. A 370 5-6 (2007) 379-387
-
(2007)
Phys. Lett. A
, vol.370
, Issue.5-6
, pp. 379-387
-
-
Momani, S.1
Odibat, Z.2
Erturk, V.3
-
20
-
-
47849126401
-
A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor's formula
-
Momani S., and Odibat Z. A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor's formula. J. Comput. Appl. Math. 220 1-2 (2008) 85-95
-
(2008)
J. Comput. Appl. Math.
, vol.220
, Issue.1-2
, pp. 85-95
-
-
Momani, S.1
Odibat, Z.2
-
21
-
-
64549148828
-
Series solutions of non-linear Riccati differential equations with fractional order
-
Cang J., Tan Y., Xu H., and Liao S.J. Series solutions of non-linear Riccati differential equations with fractional order. Chaos Soliton. Fract. 40 1 (2009) 1-9
-
(2009)
Chaos Soliton. Fract.
, vol.40
, Issue.1
, pp. 1-9
-
-
Cang, J.1
Tan, Y.2
Xu, H.3
Liao, S.J.4
-
24
-
-
0000615571
-
A kind of approximate solution technique which does not depend upon small parameters: a special example
-
Liao S.J. A kind of approximate solution technique which does not depend upon small parameters: a special example. Int. J. Non-Linear Mech. 30 (1995) 371-380
-
(1995)
Int. J. Non-Linear Mech.
, vol.30
, pp. 371-380
-
-
Liao, S.J.1
-
25
-
-
0031232480
-
An approximate solution technique which does not depend upon small parameters (part 2): an application in fluid mechanics
-
Liao S.J. An approximate solution technique which does not depend upon small parameters (part 2): an application in fluid mechanics. Int. J. Non-Linear Mech. 32 (1997) 815-822
-
(1997)
Int. J. Non-Linear Mech.
, vol.32
, pp. 815-822
-
-
Liao, S.J.1
-
27
-
-
0141961626
-
On the homotopy analysis method for nonlinear problems
-
Liao S.J. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147 (2004) 499-513
-
(2004)
Appl. Math. Comput.
, vol.147
, pp. 499-513
-
-
Liao, S.J.1
-
28
-
-
34848900880
-
A general approach to obtain series solutions of nonlinear differential equations
-
Liao S.J., and Tan Y. A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119 (2007) 297-354
-
(2007)
Stud. Appl. Math.
, vol.119
, pp. 297-354
-
-
Liao, S.J.1
Tan, Y.2
-
29
-
-
38649139314
-
Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method
-
Abbasbandy S. Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method. Chem. Eng. J. 136 2-3 (2008) 144-150
-
(2008)
Chem. Eng. J.
, vol.136
, Issue.2-3
, pp. 144-150
-
-
Abbasbandy, S.1
-
30
-
-
39749176952
-
Solitary wave solutions to the Kuramoto-Sivashinsky equation by means of the homotopy analysis method
-
Abbasbandy S. Solitary wave solutions to the Kuramoto-Sivashinsky equation by means of the homotopy analysis method. Nonlinear Dynam. 52 (2008) 35-40
-
(2008)
Nonlinear Dynam.
, vol.52
, pp. 35-40
-
-
Abbasbandy, S.1
-
31
-
-
37549038299
-
Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method
-
Abbasbandy S., and Parkes E.J. Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method. Chaos Soliton. Fract. 36 3 (2008) 581-591
-
(2008)
Chaos Soliton. Fract.
, vol.36
, Issue.3
, pp. 581-591
-
-
Abbasbandy, S.1
Parkes, E.J.2
-
33
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency independent. Part II
-
Caputo M. Linear models of dissipation whose Q is almost frequency independent. Part II. J. Roy. Astral. Soc. 13 (1967) 529-539
-
(1967)
J. Roy. Astral. Soc.
, vol.13
, pp. 529-539
-
-
Caputo, M.1
-
34
-
-
41449097382
-
Series solutions of nano boundary layer flows by means of the homotopy analysis method
-
Cheng J., Liao S., Mohapatra R.N., and Vajravelub K. Series solutions of nano boundary layer flows by means of the homotopy analysis method. J. Math. Anal. Appl. 343 1 (2008) 233-245
-
(2008)
J. Math. Anal. Appl.
, vol.343
, Issue.1
, pp. 233-245
-
-
Cheng, J.1
Liao, S.2
Mohapatra, R.N.3
Vajravelub, K.4
|