메뉴 건너뛰기




Volumn 34, Issue 3, 2010, Pages 593-600

A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations

Author keywords

Caputo fractional derivative; Fractional differential equation; Homotopy analysis method

Indexed keywords

ANALYTIC METHOD; BASE FUNCTION; CAPUTO FRACTIONAL DERIVATIVE; CONVERGENCE REGION; DEFORMATION EQUATIONS; FRACTIONAL CALCULUS; FRACTIONAL DIFFERENTIAL EQUATION; FRACTIONAL DIFFERENTIAL EQUATIONS; FRACTIONAL ORDER; HIGH-ORDER; HOMOTOPY ANALYSIS METHOD; HOMOTOPY ANALYSIS METHODS; NONLINEAR ORDINARY DIFFERENTIAL EQUATION; NONLINEAR PROBLEMS; NUMERICAL EXAMPLE;

EID: 70350378693     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2009.06.025     Document Type: Article
Times cited : (129)

References (34)
  • 1
    • 28044468843 scopus 로고    scopus 로고
    • Finite difference approximations for two-sided space-fractional partial differential equations
    • Meerschaert M.M., and Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56 (2006) 80-90
    • (2006) Appl. Numer. Math. , vol.56 , pp. 80-90
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 2
    • 33845628108 scopus 로고    scopus 로고
    • A second-order accurate numerical method for the two-dimensional fractional diffusion equation
    • Tadjeran C., and Meerschaert M.M. A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220 (2007) 813-823
    • (2007) J. Comput. Phys. , vol.220 , pp. 813-823
    • Tadjeran, C.1    Meerschaert, M.M.2
  • 4
    • 12244291039 scopus 로고    scopus 로고
    • Numerical solutions for systems of fractional differential equations by the decomposition method
    • Momani S., and Al-Khaled K. Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput. 162 3 (2005) 1351-1365
    • (2005) Appl. Math. Comput. , vol.162 , Issue.3 , pp. 1351-1365
    • Momani, S.1    Al-Khaled, K.2
  • 5
    • 24144494623 scopus 로고    scopus 로고
    • An explicit and numerical solutions of the fractional KdV equation
    • Momani S. An explicit and numerical solutions of the fractional KdV equation. Math. Comput. Simul. 70 2 (2005) 110-118
    • (2005) Math. Comput. Simul. , vol.70 , Issue.2 , pp. 110-118
    • Momani, S.1
  • 6
    • 27744514614 scopus 로고    scopus 로고
    • Non-perturbative analytical solutions of the space- and time-fractional Burgers equations
    • Momani S. Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos Soliton. Fract. 28 4 (2006) 930-937
    • (2006) Chaos Soliton. Fract. , vol.28 , Issue.4 , pp. 930-937
    • Momani, S.1
  • 7
    • 33744981446 scopus 로고    scopus 로고
    • Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method
    • Momani S., and Odibat Z. Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177 (2006) 488-494
    • (2006) Appl. Math. Comput. , vol.177 , pp. 488-494
    • Momani, S.1    Odibat, Z.2
  • 8
    • 33749512364 scopus 로고    scopus 로고
    • Approximate solutions for boundary value problems of time-fractional wave equation
    • Odibat Z., and Momani S. Approximate solutions for boundary value problems of time-fractional wave equation. Appl. Math. Comput. 181 (2006) 1351-1358
    • (2006) Appl. Math. Comput. , vol.181 , pp. 1351-1358
    • Odibat, Z.1    Momani, S.2
  • 9
    • 30344464250 scopus 로고    scopus 로고
    • Application of variational iteration method to nonlinear differential equations of fractional order
    • Odibat Z., and Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlin. Sci. Numer. Simul. 7 1 (2006) 27-34
    • (2006) Int. J. Nonlin. Sci. Numer. Simul. , vol.7 , Issue.1 , pp. 27-34
    • Odibat, Z.1    Momani, S.2
  • 10
    • 33748425302 scopus 로고    scopus 로고
    • Numerical comparison of methods for solving linear differential equations of fractional order
    • Momani S., and Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Soliton. Fract. 31 5 (2007) 1248-1255
    • (2007) Chaos Soliton. Fract. , vol.31 , Issue.5 , pp. 1248-1255
    • Momani, S.1    Odibat, Z.2
  • 11
    • 34250661428 scopus 로고    scopus 로고
    • Numerical approach to differential equations of fractional order
    • Momani S., and Odibat Z. Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207 1 (2007) 96-110
    • (2007) J. Comput. Appl. Math. , vol.207 , Issue.1 , pp. 96-110
    • Momani, S.1    Odibat, Z.2
  • 12
    • 34548384362 scopus 로고    scopus 로고
    • Numerical methods for solving nonlinear partial differential equations of fractional order
    • Odibat Z., and Momani S. Numerical methods for solving nonlinear partial differential equations of fractional order. Appl. Math. model. 32 1 (2008) 28-39
    • (2008) Appl. Math. model. , vol.32 , Issue.1 , pp. 28-39
    • Odibat, Z.1    Momani, S.2
  • 13
    • 35348869861 scopus 로고    scopus 로고
    • Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order
    • Odibat Z., and Momani S. Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos Soliton. Fract. 36 1 (2008) 167-174
    • (2008) Chaos Soliton. Fract. , vol.36 , Issue.1 , pp. 167-174
    • Odibat, Z.1    Momani, S.2
  • 14
    • 34748865972 scopus 로고    scopus 로고
    • Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations
    • Momani S., and Odibat Z. Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Comput. Math. Appl. 54 7-8 (2007) 910-919
    • (2007) Comput. Math. Appl. , vol.54 , Issue.7-8 , pp. 910-919
    • Momani, S.1    Odibat, Z.2
  • 15
    • 34247395044 scopus 로고    scopus 로고
    • Homotopy perturbation method for nonlinear partial differential equations of fractional order
    • Momani S., and Odibat Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365 5-6 (2007) 345-350
    • (2007) Phys. Lett. A , vol.365 , Issue.5-6 , pp. 345-350
    • Momani, S.1    Odibat, Z.2
  • 16
    • 65449158498 scopus 로고    scopus 로고
    • The multistage homotopy perturbation method: a powerful scheme for handling the Lorenz system
    • Chowdhury M.S., Hashim I., and Momani S. The multistage homotopy perturbation method: a powerful scheme for handling the Lorenz system. Chaos Soliton. Fract. 40 4 (2009) 1929-1937
    • (2009) Chaos Soliton. Fract. , vol.40 , Issue.4 , pp. 1929-1937
    • Chowdhury, M.S.1    Hashim, I.2    Momani, S.3
  • 17
    • 39149140685 scopus 로고    scopus 로고
    • Application of generalized differential transform method to multi-order fractional differential equations
    • Erturk V., Momani S., and Odibat Z. Application of generalized differential transform method to multi-order fractional differential equations. Comm. Nonlin. Sci. Numer. Simul. 13 8 (2008) 1642-1654
    • (2008) Comm. Nonlin. Sci. Numer. Simul. , vol.13 , Issue.8 , pp. 1642-1654
    • Erturk, V.1    Momani, S.2    Odibat, Z.3
  • 18
    • 36549063424 scopus 로고    scopus 로고
    • Generalized differential transform method for linear partial differential equations of fractional order
    • Odibat Z., and Momani S. Generalized differential transform method for linear partial differential equations of fractional order. Appl. Math. Lett. 21 2 (2008) 194-199
    • (2008) Appl. Math. Lett. , vol.21 , Issue.2 , pp. 194-199
    • Odibat, Z.1    Momani, S.2
  • 19
    • 35349007529 scopus 로고    scopus 로고
    • Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation
    • Momani S., Odibat Z., and Erturk V. Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. Phys. Lett. A 370 5-6 (2007) 379-387
    • (2007) Phys. Lett. A , vol.370 , Issue.5-6 , pp. 379-387
    • Momani, S.1    Odibat, Z.2    Erturk, V.3
  • 20
    • 47849126401 scopus 로고    scopus 로고
    • A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor's formula
    • Momani S., and Odibat Z. A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor's formula. J. Comput. Appl. Math. 220 1-2 (2008) 85-95
    • (2008) J. Comput. Appl. Math. , vol.220 , Issue.1-2 , pp. 85-95
    • Momani, S.1    Odibat, Z.2
  • 21
    • 64549148828 scopus 로고    scopus 로고
    • Series solutions of non-linear Riccati differential equations with fractional order
    • Cang J., Tan Y., Xu H., and Liao S.J. Series solutions of non-linear Riccati differential equations with fractional order. Chaos Soliton. Fract. 40 1 (2009) 1-9
    • (2009) Chaos Soliton. Fract. , vol.40 , Issue.1 , pp. 1-9
    • Cang, J.1    Tan, Y.2    Xu, H.3    Liao, S.J.4
  • 24
    • 0000615571 scopus 로고
    • A kind of approximate solution technique which does not depend upon small parameters: a special example
    • Liao S.J. A kind of approximate solution technique which does not depend upon small parameters: a special example. Int. J. Non-Linear Mech. 30 (1995) 371-380
    • (1995) Int. J. Non-Linear Mech. , vol.30 , pp. 371-380
    • Liao, S.J.1
  • 25
    • 0031232480 scopus 로고    scopus 로고
    • An approximate solution technique which does not depend upon small parameters (part 2): an application in fluid mechanics
    • Liao S.J. An approximate solution technique which does not depend upon small parameters (part 2): an application in fluid mechanics. Int. J. Non-Linear Mech. 32 (1997) 815-822
    • (1997) Int. J. Non-Linear Mech. , vol.32 , pp. 815-822
    • Liao, S.J.1
  • 27
    • 0141961626 scopus 로고    scopus 로고
    • On the homotopy analysis method for nonlinear problems
    • Liao S.J. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147 (2004) 499-513
    • (2004) Appl. Math. Comput. , vol.147 , pp. 499-513
    • Liao, S.J.1
  • 28
    • 34848900880 scopus 로고    scopus 로고
    • A general approach to obtain series solutions of nonlinear differential equations
    • Liao S.J., and Tan Y. A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119 (2007) 297-354
    • (2007) Stud. Appl. Math. , vol.119 , pp. 297-354
    • Liao, S.J.1    Tan, Y.2
  • 29
    • 38649139314 scopus 로고    scopus 로고
    • Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method
    • Abbasbandy S. Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method. Chem. Eng. J. 136 2-3 (2008) 144-150
    • (2008) Chem. Eng. J. , vol.136 , Issue.2-3 , pp. 144-150
    • Abbasbandy, S.1
  • 30
    • 39749176952 scopus 로고    scopus 로고
    • Solitary wave solutions to the Kuramoto-Sivashinsky equation by means of the homotopy analysis method
    • Abbasbandy S. Solitary wave solutions to the Kuramoto-Sivashinsky equation by means of the homotopy analysis method. Nonlinear Dynam. 52 (2008) 35-40
    • (2008) Nonlinear Dynam. , vol.52 , pp. 35-40
    • Abbasbandy, S.1
  • 31
    • 37549038299 scopus 로고    scopus 로고
    • Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method
    • Abbasbandy S., and Parkes E.J. Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method. Chaos Soliton. Fract. 36 3 (2008) 581-591
    • (2008) Chaos Soliton. Fract. , vol.36 , Issue.3 , pp. 581-591
    • Abbasbandy, S.1    Parkes, E.J.2
  • 33
    • 84977255207 scopus 로고
    • Linear models of dissipation whose Q is almost frequency independent. Part II
    • Caputo M. Linear models of dissipation whose Q is almost frequency independent. Part II. J. Roy. Astral. Soc. 13 (1967) 529-539
    • (1967) J. Roy. Astral. Soc. , vol.13 , pp. 529-539
    • Caputo, M.1
  • 34
    • 41449097382 scopus 로고    scopus 로고
    • Series solutions of nano boundary layer flows by means of the homotopy analysis method
    • Cheng J., Liao S., Mohapatra R.N., and Vajravelub K. Series solutions of nano boundary layer flows by means of the homotopy analysis method. J. Math. Anal. Appl. 343 1 (2008) 233-245
    • (2008) J. Math. Anal. Appl. , vol.343 , Issue.1 , pp. 233-245
    • Cheng, J.1    Liao, S.2    Mohapatra, R.N.3    Vajravelub, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.