-
1
-
-
0028849086
-
Cloning of a novel family of mammalian GTP-binding proteins (RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases?\r
-
PMID: 7499430; DOI: 10.1074/jbc.270.48.28982
-
Schürmann A, Brauers A, Massmann S, Becker W, Joost HG. Cloning of a novel family of mammalian GTP-binding proteins (RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases. J Biol Chem 1995; 270:28982-8; PMID: 7499430; DOI: 10.1074/jbc.270.48.28982.
-
(1995)
J Biol Chem
, vol.270
, pp. 28982-28988
-
-
Schürmann, A.1
Brauers, A.2
Massmann, S.3
Becker, W.4
Joost, H.G.5
-
2
-
-
0035831451
-
Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B?\r
-
PMID: 11073942; DOI: 10.1074/jbc.M004389200
-
Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem 2001; 276:7246-57; PMID: 11073942; DOI: 10.1074/jbc.M004389200.
-
(2001)
J Biol Chem
, vol.276
, pp. 7246-7257
-
-
Sekiguchi, T.1
Hirose, E.2
Nakashima, N.3
Ii, M.4
Nishimoto, T.5
-
3
-
-
0031985372
-
RagA is a functional homologue of S. cerevisiae Gtr1p involved in the Ran/Gsp1-GTPase pathway?\r
-
PMID: 9394008
-
Hirose E, Nakashima N, Sekiguchi T, Nishimoto T. RagA is a functional homologue of S. cerevisiae Gtr1p involved in the Ran/Gsp1-GTPase pathway. J Cell Sci 1998; 111:11-21; PMID: 9394008.
-
(1998)
J Cell Sci
, vol.111
, pp. 11-21
-
-
Hirose, E.1
Nakashima, N.2
Sekiguchi, T.3
Nishimoto, T.4
-
4
-
-
0032771639
-
Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p?\r
-
PMID: 10388807
-
Nakashima N, Noguchi E, Nishimoto T. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics 1999; 152:853-67; PMID: 10388807.
-
(1999)
Genetics
, vol.152
, pp. 853-867
-
-
Nakashima, N.1
Noguchi, E.2
Nishimoto, T.3
-
5
-
-
33745745910
-
A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast?\r
-
PMID: 16732272; DOI: 10.1038/ncb1419
-
Gao M, Kaiser CA. A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat Cell Biol 2006; 8:657-67; PMID: 16732272; DOI: 10.1038/ncb1419.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 657-667
-
-
Gao, M.1
Kaiser, C.A.2
-
6
-
-
77956740779
-
Structural conservation of components in the amino acid sensing branch of the TOR pathway in yeast and mammals?\r
-
PMID: 20655927; DOI: 10.1016/j.jmb.2010.07.034
-
Kogan K, Spear ED, Kaiser CA, Fass D. Structural conservation of components in the amino acid sensing branch of the TOR pathway in yeast and mammals. J Mol Biol 2010; 402:388-98; PMID: 20655927; DOI: 10.1016/j.jmb.2010.07.034.
-
(2010)
J Mol Biol
, vol.402
, pp. 388-398
-
-
Kogan, K.1
Spear, E.D.2
Kaiser, C.A.3
Fass, D.4
-
7
-
-
3342936383
-
Crystal structure of the p14/MP1 scaffolding complex: How a twin couple attaches mitogen-activated protein kinase signaling to late endosomes?\r
-
PMID: 15263099; DOI: 10.1073/pnas.0403435101
-
Kurzbauer R, Teis D, de Araujo ME, Maurer-Stroh S, Eisenhaber F, Bourenkov GP, et al. Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. Proc Natl Acad Sci U S A 2004; 101:10984-9; PMID: 15263099; DOI: 10.1073/pnas.0403435101.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 10984-10989
-
-
Kurzbauer, R.1
Teis, D.2
de Araujo, M.E.3
Maurer-Stroh, S.4
Eisenhaber, F.5
Bourenkov, G.P.6
-
8
-
-
62049084764
-
The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes?\r
-
PMID: 19177150; DOI: 10.1038/emboj.2008.308
-
Nada S, Hondo A, Kasai A, Koike M, Saito K, Uchiyama Y, et al. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J 2009; 28:477-89; PMID: 19177150; DOI: 10.1038/emboj.2008.308.
-
(2009)
EMBO J
, vol.28
, pp. 477-489
-
-
Nada, S.1
Hondo, A.2
Kasai, A.3
Koike, M.4
Saito, K.5
Uchiyama, Y.6
-
9
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress?\r
-
PMID: 20965424; DOI: 10.1016/j.molcel.2010.09.026
-
Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010; 40:310-22; PMID: 20965424; DOI: 10.1016/j.molcel.2010.09.026.
-
(2010)
Mol Cell
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
Peterson, T.R.2
Sabatini, D.M.3
-
10
-
-
32044465506
-
TOR signaling in growth and metabolism?\r
-
PMID: 16469695; DOI: 10.1016/j.cell.2006.01.016
-
Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124:471-84; PMID: 16469695; DOI: 10.1016/j.cell.2006.01.016.
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
11
-
-
0025776523
-
Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast?\r
-
PMID: 1715094; DOI: 10.1126/science.1715094
-
Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991; 253:905-9; PMID: 1715094; DOI: 10.1126/science.1715094.
-
(1991)
Science
, vol.253
, pp. 905-909
-
-
Heitman, J.1
Movva, N.R.2
Hall, M.N.3
-
12
-
-
0028825698
-
TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin?\r
-
PMID: 7499212; DOI: 10.1074/jbc.270.46.27531
-
Lorenz MC, Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem 1995; 270:27531-7; PMID: 7499212; DOI: 10.1074/jbc.270.46.27531.
-
(1995)
J Biol Chem
, vol.270
, pp. 27531-27537
-
-
Lorenz, M.C.1
Heitman, J.2
-
13
-
-
0029842109
-
Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP?\r
-
PMID: 8662507; DOI: 10.1126/science.273.5272.239
-
Choi J, Chen J, Schreiber SL, Clardy J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996; 273:239-42; PMID: 8662507; DOI: 10.1126/science.273.5272.239.
-
(1996)
Science
, vol.273
, pp. 239-242
-
-
Choi, J.1
Chen, J.2
Schreiber, S.L.3
Clardy, J.4
-
14
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control?\r
-
PMID: 12408816; DOI: 10.1016/S1097-2765(02)00636-6
-
Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002; 10:457-68; PMID: 12408816; DOI: 10.1016/S1097-2765(02)00636-6.
-
(2002)
Mol Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
Lorberg, A.4
Crespo, J.L.5
Bonenfant, D.6
-
15
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB?\r
-
PMID: 16603397; DOI: 10.1016/j.molcel.2006.03.029
-
Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22:159-68; PMID: 16603397; DOI: 10.1016/j.molcel.2006.03.029.
-
(2006)
Mol Cell
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
Sheen, J.H.4
Hsu, P.P.5
Bagley, A.F.6
-
16
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive?\r
-
PMID: 15467718; DOI: 10.1038/ncb1183
-
Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6:1122-8; PMID: 15467718; DOI: 10.1038/ncb1183.
-
(2004)
Nat Cell Biol
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
Lin, S.4
Rüegg, M.A.5
Hall, A.6
-
17
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton?\r
-
PMID: 15268862; DOI: 10.1016/j.cub.2004.06.054
-
Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14:1296-302; PMID: 15268862; DOI: 10.1016/j.cub.2004.06.054.
-
(2004)
Curr Biol
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.H.3
Guertin, D.A.4
Latek, R.R.5
Erdjument-Bromage, H.6
-
18
-
-
0037178786
-
mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery?\r
-
PMID: 12150925; DOI: 10.1016/S0092-8674(02)00808-5
-
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110:163-75; PMID: 12150925; DOI: 10.1016/S0092-8674(02)00808-5.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
-
19
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action?\r
-
PMID: 12150926; DOI: 10.1016/S0092-8674(02)00833-4
-
Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002; 110:177-89; PMID: 12150926; DOI: 10.1016/S0092-8674(02)00833-4.
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.4
Oshiro, N.5
Hidayat, S.6
-
20
-
-
21244448694
-
The TOR and EGO protein complexes orchestrate microautophagy in yeast?\r
-
PMID: 15989961; DOI: 10.1016/j.molcel.2005.05.020
-
Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 2005; 19:15-26; PMID: 15989961; DOI: 10.1016/j.molcel.2005.05.020.
-
(2005)
Mol Cell
, vol.19
, pp. 15-26
-
-
Dubouloz, F.1
Deloche, O.2
Wanke, V.3
Cameroni, E.4
De Virgilio, C.5
-
21
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1?\r
-
PMID: 18497260; DOI: 10.1126/science.1157535
-
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320:1496-501; PMID: 18497260; DOI: 10.1126/science.1157535.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
-
22
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response?\r
-
PMID: 18604198; DOI: 10.1038/ncb1753
-
Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008; 10:935-45; PMID: 18604198; DOI: 10.1038/ncb1753.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
23
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids?\r
-
PMID: 20381137; DOI: 10.1016/j.cell.2010.02.024
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141:290-303; PMID: 20381137; DOI: 10.1016/j.cell.2010.02.024.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
24
-
-
80555143078
-
mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase?\r
-
PMID: 22053050; DOI: 10.1126/science.1207056
-
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011; 334:678-83; PMID: 22053050; DOI: 10.1126/science.1207056.
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
25
-
-
80053586265
-
p62 is a key regulator of nutrient sensing in the mTORC1 pathway?\r
-
PMID: 21981924; DOI: 10.1016/j.molcel.2011.06.038
-
Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 2011; 44:134-46; PMID: 21981924; DOI: 10.1016/j.molcel.2011.06.038.
-
(2011)
Mol Cell
, vol.44
, pp. 134-146
-
-
Duran, A.1
Amanchy, R.2
Linares, J.F.3
Joshi, J.4
Abu-Baker, S.5
Porollo, A.6
-
26
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice?\r
-
PMID: 18083104; DOI: 10.1016/j.cell.2007.10.035
-
Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007; 131:1149-63; PMID: 18083104; DOI: 10.1016/j.cell.2007.10.035.
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
Waguri, S.2
Koike, M.3
Sou, Y.S.4
Ueno, T.5
Hara, T.6
-
27
-
-
34548259958
-
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy?\r
-
PMID: 17580304; DOI: 10.1074/jbc.M702824200
-
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282:24131-45; PMID: 17580304; DOI: 10.1074/jbc.M702824200.
-
(2007)
J Biol Chem
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
-
28
-
-
66449114033
-
p62 at the crossroads of autophagy, apoptosis, and cancer?\r
-
PMID: 19524504; DOI: 10.1016/j.cell.2009.05.023
-
Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 2009; 137:1001-4; PMID: 19524504; DOI: 10.1016/j.cell.2009.05.023.
-
(2009)
Cell
, vol.137
, pp. 1001-1004
-
-
Moscat, J.1
Diaz-Meco, M.T.2
-
29
-
-
65549085701
-
Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling?\r
-
PMID: 19427028; DOI: 10.1016/j.cell.2009.03.015
-
Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR, et al. Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 2009; 137:721-35; PMID: 19427028; DOI: 10.1016/j.cell.2009.03.015.
-
(2009)
Cell
, vol.137
, pp. 721-735
-
-
Jin, Z.1
Li, Y.2
Pitti, R.3
Lawrence, D.4
Pham, V.C.5
Lill, J.R.6
-
30
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1?\r
-
PMID: 20173742; DOI: 10.1038/ncb2021
-
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 2010; 12:213-23; PMID: 20173742; DOI: 10.1038/ncb2021.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
Taguchi, K.4
Kobayashi, A.5
Ichimura, Y.6
-
31
-
-
77954599053
-
p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription?\r
-
PMID: 20452972; DOI: 10.1074/jbc.M110.118976
-
Jain A, Lamark T, Sjøttem E, Larsen KB, Awuh JA, Øvervatn A, et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 2010; 285:22576-91; PMID: 20452972; DOI: 10.1074/jbc.M110.118976.
-
(2010)
J Biol Chem
, vol.285
, pp. 22576-22591
-
-
Jain, A.1
Lamark, T.2
Sjøttem, E.3
Larsen, K.B.4
Awuh, J.A.5
Øvervatn, A.6
-
32
-
-
0034599476
-
The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway?\r
-
PMID: 10747026; DOI: 10.1093/emboj/19.7.1576
-
Sanz L, Diaz-Meco MT, Nakano H, Moscat J. The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J 2000; 19:1576-86; PMID: 10747026; DOI: 10.1093/emboj/19.7.1576.
-
(2000)
EMBO J
, vol.19
, pp. 1576-1586
-
-
Sanz, L.1
Diaz-Meco, M.T.2
Nakano, H.3
Moscat, J.4
-
33
-
-
79956325949
-
Spatial coupling of mTOR and autophagy augments secretory phenotypes?\r
-
PMID: 21512002; DOI: 10.1126/science.1205407
-
Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011; 332:966-70; PMID: 21512002; DOI: 10.1126/science.1205407.
-
(2011)
Science
, vol.332
, pp. 966-970
-
-
Narita, M.1
Young, A.R.2
Arakawa, S.3
Samarajiwa, S.A.4
Nakashima, T.5
Yoshida, S.6
-
34
-
-
58849154235
-
Senescence-messaging secretome: SMS-ing cellular stress?\r
-
PMID: 19132009; DOI: 10.1038/nrc2560
-
Kuilman T, Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 2009; 9:81-94; PMID: 19132009; DOI: 10.1038/nrc2560.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 81-94
-
-
Kuilman, T.1
Peeper, D.S.2
-
35
-
-
64349123107
-
Autophagy mediates the mitotic senescence transition?\r
-
PMID: 19279323; DOI: 10.1101/gad.519709
-
Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF, et al. Autophagy mediates the mitotic senescence transition. Genes Dev 2009; 23:798-803; PMID: 19279323; DOI: 10.1101/gad.519709.
-
(2009)
Genes Dev
, vol.23
, pp. 798-803
-
-
Young, A.R.1
Narita, M.2
Ferreira, M.3
Kirschner, K.4
Sadaie, M.5
Darot, J.F.6
-
36
-
-
33947594129
-
Hyperactive Ras in developmental disorders and cancer?\r
-
PMID: 17384584; DOI: 10.1038/nrc2109
-
Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007; 7:295-308; PMID: 17384584; DOI: 10.1038/nrc2109.
-
(2007)
Nat Rev Cancer
, vol.7
, pp. 295-308
-
-
Schubbert, S.1
Shannon, K.2
Bollag, G.3
|