-
1
-
-
43049170468
-
Ultrahigh electron mobility in suspended graphene
-
Bolotin, K.I., Sikes, K.J., Jiang, Z.d., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351-355 (2008)
-
(2008)
Solid State Commun.
, vol.146
, pp. 351-355
-
-
Bolotin, K.I.1
Sikes, K.J.2
Jiang, Z.D.3
Klima, M.4
Fudenberg, G.5
Hone, J.6
Kim, P.7
Stormer, H.L.8
-
2
-
-
77955231284
-
Graphene transistors
-
Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487-496 (2010)
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 487-496
-
-
Schwierz, F.1
-
3
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902-907 (2008)
-
(2008)
Nano Lett.
, vol.8
, pp. 902-907
-
-
Balandin, A.A.1
Ghosh, S.2
Bao, W.3
Calizo, I.4
Teweldebrhan, D.5
Miao, F.6
Lau, C.N.7
-
4
-
-
42349113188
-
Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits
-
Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N.: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008)
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 151911
-
-
Ghosh, S.1
Calizo, I.2
Teweldebrhan, D.3
Pokatilov, E.P.4
Nika, D.L.5
Balandin, A.A.6
Bao, W.7
Miao, F.8
Lau, C.N.9
-
5
-
-
77952410071
-
Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
-
Cai, W., Moore, A.L., Zhu, Y., Li, X., Chen, S., Shi, L., Ruoff, R.S.: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10, 1645-1651 (2010)
-
(2010)
Nano Lett.
, vol.10
, pp. 1645-1651
-
-
Cai, W.1
Moore, A.L.2
Zhu, Y.3
Li, X.4
Chen, S.5
Shi, L.6
Ruoff, R.S.7
-
6
-
-
63149198821
-
Thermoelectric and magnetother-moelectric transport measurements of graphene
-
Zuev, Y.M., Chang, W., Kim, P.: Thermoelectric and magnetother-moelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009)
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 096807
-
-
Zuev, Y.M.1
Chang, W.2
Kim, P.3
-
7
-
-
67650305370
-
Anomalous thermoelectric transport of Dirac particles in graphene
-
Wei, P., Bao, W., Pu, Y., Lau, C.N., Shi, J.: Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009)
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 166808
-
-
Wei, P.1
Bao, W.2
Pu, Y.3
Lau, C.N.4
Shi, J.5
-
8
-
-
0000170279
-
The use of semiconductors in thermoelectric refrigeration
-
Goldsmid, H.J., Douglas, R.W.: The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5, 386-390 (1954)
-
(1954)
Br. J. Appl. Phys.
, vol.5
, pp. 386-390
-
-
Goldsmid, H.J.1
Douglas, R.W.2
-
9
-
-
0001173915
-
Effect of quantum-well structures on the thermoelectric figure of merit
-
Hicks, L.D., Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727-12731 (1993)
-
(1993)
Phys. Rev. B
, vol.47
, pp. 12727-12731
-
-
Hicks, L.D.1
Dresselhaus, M.S.2
-
10
-
-
0000695378
-
Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit
-
Hicks, L.D., Harman, T.C., Sun, X., Dresselhaus, M.S.: Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 53, R10493-R10496 (1996)
-
(1996)
Phys. Rev. B
, vol.53
-
-
Hicks, L.D.1
Harman, T.C.2
Sun, X.3
Dresselhaus, M.S.4
-
11
-
-
0035846181
-
Thin-film thermoelectric devices with high room-temperature figures of merit
-
DOI 10.1038/35098012
-
Venkatasubramanian, R., Siivola, E., Colpitts, T., O'Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597-602 (2001) (Pubitemid 32964053)
-
(2001)
Nature
, vol.413
, Issue.6856
, pp. 597-602
-
-
Venkatasubramanian, R.1
Siivola, E.2
Colpitts, T.3
O'Quinn, B.4
-
12
-
-
33845256885
-
0.19As superlattices
-
0.19As superlattices. Phys. Rev. B 74, 205335 (2006)
-
(2006)
Phys. Rev. B
, vol.74
, pp. 205335
-
-
Zide, J.M.O.1
Vashaee, D.2
Bian, Z.X.3
Zeng, G.4
Bowers, J.E.5
Shakouri, A.6
Gossard, A.C.7
-
13
-
-
0037183949
-
Quantum dot superlattice thermoelectric materials and devices
-
Harman, T.C., Taylor, P.J., Walsh, M.P., LaForge, B.E.: Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229-2232 (2002)
-
(2002)
Science
, vol.297
, pp. 2229-2232
-
-
Harman, T.C.1
Taylor, P.J.2
Walsh, M.P.3
Laforge, B.E.4
-
14
-
-
77957026493
-
Thermoelectric properties of a weakly coupled quantum dot: Enhanced thermoelectric efficiency
-
Tsaousidou, M., Triberis, G.P.: Thermoelectric properties of a weakly coupled quantum dot: Enhanced thermoelectric efficiency. J. Phys., Condens. Matter 22, 355304 (2010)
-
(2010)
J. Phys. Condens. Matter
, vol.22
, pp. 355304
-
-
Tsaousidou, M.1
Triberis, G.P.2
-
16
-
-
38049143961
-
Enhanced thermoelectric performance of rough silicon nanowires
-
Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163-167 (2008)
-
(2008)
Nature
, vol.451
, pp. 163-167
-
-
Hochbaum, A.I.1
Chen, R.2
Delgado, R.D.3
Liang, W.4
Garnett, E.C.5
Najarian, M.6
Majumdar, A.7
Yang, P.8
-
17
-
-
38049148246
-
Silicon nanowires as efficient thermoelectric materials
-
Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W.A. III, Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168-171 (2008)
-
(2008)
Nature
, vol.451
, pp. 168-171
-
-
Boukai, A.I.1
Bunimovich, Y.2
Tahir-Kheli, J.3
Yu, J.-K.4
Goddard III, W.A.5
Heath, J.R.6
-
18
-
-
70449704483
-
Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons
-
Ni, X., Liang, G., Wang, J.-S., Li, B.: Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons. Appl. Phys. Lett. 95, 192114 (2009)
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 192114
-
-
Ni, X.1
Liang, G.2
Wang, J.-S.3
Li, B.4
-
19
-
-
77954974060
-
Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons
-
Sevinçli, H., Cuniberti, G.: Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010)
-
(2010)
Phys. Rev. B
, vol.81
, pp. 113401
-
-
Sevinçli, H.1
Cuniberti, G.2
-
20
-
-
78349267636
-
Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge
-
Ouyang, T., Chen, Y.P., Yang, K.K., Zhong, J.X.: Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge. Europhys. Lett. 88, 28002 (2009)
-
(2009)
Europhys. Lett.
, vol.88
, pp. 28002
-
-
Ouyang, T.1
Chen, Y.P.2
Yang, K.K.3
Zhong, J.X.4
-
21
-
-
80052951740
-
Geometrical effects on the thermoelectric properties of ballistic graphene antidot lattices
-
Karamitaheri, H., Pourfath, M., Faez, R., Kosina, H.: Geometrical effects on the thermoelectric properties of ballistic graphene antidot lattices. J. Appl. Phys. 110, 054506 (2011)
-
(2011)
J. Appl. Phys.
, vol.110
, pp. 054506
-
-
Karamitaheri, H.1
Pourfath, M.2
Faez, R.3
Kosina, H.4
-
22
-
-
79961181998
-
Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons
-
Mazzamuto, F., Hung Nguyen, V., Apertet, Y., Caër, C., Chassat, C., Saint-Martin, J., Dollfus, P.: Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 83, 235426 (2011)
-
(2011)
Phys. Rev. B
, vol.83
, pp. 235426
-
-
Mazzamuto, F.1
Hung Nguyen, V.2
Apertet, Y.3
Caër, C.4
Chassat, C.5
Saint-Martin, J.6
Dollfus, P.7
-
23
-
-
33748492119
-
Monte Carlo simulation of phonon confinement in silicon nanostructures: Application to the determination of the thermal conductivity of silicon nanowires
-
Lacroix, D., Joulain, K., Terris, D., Lemonnier, D.: Monte Carlo simulation of phonon confinement in silicon nanostructures: Application to the determination of the thermal conductivity of silicon nanowires. Appl. Phys. Lett. 89, 103104 (2006)
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 103104
-
-
Lacroix, D.1
Joulain, K.2
Terris, D.3
Lemonnier, D.4
-
24
-
-
0032613446
-
Molecular dynamics simulation of thermal conductivity of silicon nanowires
-
Volz, S., Chen, G.: Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl. Phys. Lett. 75, 2056-2058 (1999) (Pubitemid 129304647)
-
(1999)
Applied Physics Letters
, vol.75
, Issue.14
, pp. 2056-2058
-
-
Volz, S.G.1
Chen, G.2
-
25
-
-
67650373496
-
Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study
-
Hu, J., Ruan, X., Chen, Y.P.: Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study. Nano Lett. 9, 2730-2735 (2009)
-
(2009)
Nano Lett.
, vol.9
, pp. 2730-2735
-
-
Hu, J.1
Ruan, X.2
Chen, Y.P.3
-
26
-
-
58149177094
-
Phonon thermal conductance of disordered graphene strips with armchair edges
-
Shi, L.-P., Xiong, S.-J.: Phonon thermal conductance of disordered graphene strips with armchair edges. Phys. Lett. A 373, 563-569 (2009)
-
(2009)
Phys. Lett. A
, vol.373
, pp. 563-569
-
-
Shi, L.-P.1
Xiong, S.-J.2
-
27
-
-
77956685934
-
Phonon transport in large scale carbon-based disordered materials: Implementation of an efficient order-N and real-space Kubo methodology
-
Li, W., Sevinçli, H., Haldun, G., Cuniberti, G., Roche, S.: Phonon transport in large scale carbon-based disordered materials: Implementation of an efficient order-N and real-space Kubo methodology. Phys. Rev. B 82, 041410 (2010)
-
(2010)
Phys. Rev. B
, vol.82
, pp. 041410
-
-
Li, W.1
Sevinçli, H.2
Haldun, G.3
Cuniberti, G.4
Roche, S.5
-
28
-
-
63149164944
-
Edge effects on quantum thermal transport in graphene nanoribbons: Tight-binding calculations
-
Lan, J., Wang, J.-S., Gan, C.K., Chin, S.K.: Edge effects on quantum thermal transport in graphene nanoribbons: Tight-binding calculations. Phys. Rev. B 79, 115401 (2009)
-
(2009)
Phys. Rev. B
, vol.79
, pp. 115401
-
-
Lan, J.1
Wang, J.-S.2
Gan, C.K.3
Chin, S.K.4
-
29
-
-
54749105473
-
Electronic transport and spin-polarized effects of relativistic-like particles in graphene structures
-
Nam Do, V., Hung Nguyen, V., Dollfus, P., Bournel, A.: Electronic transport and spin-polarized effects of relativistic-like particles in graphene structures. J. Appl. Phys. 104, 063708 (2008)
-
(2008)
J. Appl. Phys.
, vol.104
, pp. 063708
-
-
Nam Do, V.1
Hung Nguyen, V.2
Dollfus, P.3
Bournel, A.4
-
30
-
-
39349085751
-
Analysis of ballistic monolayer and bilayer graphene field-effect transistors
-
Ouyang, Y., Campbell, P., Guo, J.: Analysis of ballistic monolayer and bilayer graphene field-effect transistors. Appl. Phys. Lett. 92, 063120 (2008)
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 063120
-
-
Ouyang, Y.1
Campbell, P.2
Guo, J.3
-
31
-
-
71949121196
-
Resonant tunneling and negative transconductance in single barrier bilayer graphene structure
-
Hung Nguyen, V., Bournel, A., Lien Nguyen, V., Dollfus, P.: Resonant tunneling and negative transconductance in single barrier bilayer graphene structure. Appl. Phys. Lett. 95, 232115 (2009)
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 232115
-
-
Hung Nguyen, V.1
Bournel, A.2
Lien Nguyen, V.3
Dollfus, P.4
-
32
-
-
34547828973
-
Simulation of graphene nanoribbon field-effect transistors
-
DOI 10.1109/LED.2007.901680
-
Fiori, G., Iannaccone, G.: Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett. 28, 760-762 (2007) (Pubitemid 47243564)
-
(2007)
IEEE Electron Device Letters
, vol.28
, Issue.8
, pp. 760-762
-
-
Fiori, G.1
Iannaccone, G.2
-
33
-
-
34047268918
-
Semiconducting graphene nanostrips with edge disorder
-
Gunlycke, D., Areshkin, D.A., White, C.T.: Semiconducting graphene nanostrips with edge disorder. Appl. Phys. Lett. 90, 142104 (2007)
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 142104
-
-
Gunlycke, D.1
Areshkin, D.A.2
White, C.T.3
-
34
-
-
34548658933
-
Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: A full real-space quantum transport simulation
-
Liang, G., Neophytou, N., Lundstrom, M.S., Nikonov, D.E.: Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: A full real-space quantum transport simulation. J. Appl. Phys. 102, 054307 (2007)
-
(2007)
J. Appl. Phys.
, vol.102
, pp. 054307
-
-
Liang, G.1
Neophytou, N.2
Lundstrom, M.S.3
Nikonov, D.E.4
-
35
-
-
70349313508
-
Controllable spin-dependent transport in armchair graphene nanoribbon structures
-
Hung Nguyen, V., Nam Do, V., Bournel, A., Lien Nguyen, V., Dollfus, P.: Controllable spin-dependent transport in armchair graphene nanoribbon structures. J. Appl. Phys. 106, 053710 (2009)
-
(2009)
J. Appl. Phys.
, vol.106
, pp. 053710
-
-
Hung Nguyen, V.1
Nam Do, V.2
Bournel, A.3
Lien Nguyen, V.4
Dollfus, P.5
-
36
-
-
65249105994
-
Computational study of tunnelling transistor based on graphene nanoribbon
-
Zhao, P., Chauhan, J., Guo, J.: Computational study of tunnelling transistor based on graphene nanoribbon. Nano Lett. 9, 684-688 (2009)
-
(2009)
Nano Lett.
, vol.9
, pp. 684-688
-
-
Zhao, P.1
Chauhan, J.2
Guo, J.3
-
37
-
-
77950591040
-
Negative differential resistance in zigzag-edge graphene nanoribbon junctions
-
Nam Do, V., Dollfus, P.: Negative differential resistance in zigzag-edge graphene nanoribbon junctions. J. Appl. Phys. 107, 063705 (2010)
-
(2010)
J. Appl. Phys.
, vol.107
, pp. 063705
-
-
Nam Do, V.1
Dollfus, P.2
-
38
-
-
79961037627
-
Giant effect of negative differential conductance in graphene nanoribbon p-n heterojunctions
-
Hung Nguyen, V., Mazzamuto, F., Saint-Martin, J., Bournel, A., Dollfus, P.: Giant effect of negative differential conductance in graphene nanoribbon p-n heterojunctions. Appl. Phys. Lett. 99, 042105 (2011)
-
(2011)
Appl. Phys. Lett.
, vol.99
, pp. 042105
-
-
Hung Nguyen, V.1
Mazzamuto, F.2
Saint-Martin, J.3
Bournel, A.4
Dollfus, P.5
-
39
-
-
77957164208
-
Thermoelectric properties of graphene nanoribbons, junctions and superlattices
-
Chen, Y., Jayasekera, T., Calzolari, A., Kim, K.W., Nardelli, M.B.: Thermoelectric properties of graphene nanoribbons, junctions and superlattices. J. Phys., Condens. Matter 22, 372202 (2010)
-
(2010)
J. Phys., Condens. Matter
, vol.22
, pp. 372202
-
-
Chen, Y.1
Jayasekera, T.2
Calzolari, A.3
Kim, K.W.4
Nardelli, M.B.5
-
40
-
-
34547542870
-
Phonon dispersion of graphite by inelastic X-ray scattering
-
Mohr, M., Maultzsch, J., Dobardzic, E., Reich, S., Milosevic, I., Damnjanovic, M., Bosak, A., Krisch, M., Thomsen, C.: Phonon dispersion of graphite by inelastic X-ray scattering. Phys. Rev. B 76, 035439 (2007)
-
(2007)
Phys. Rev. B
, vol.76
, pp. 035439
-
-
Mohr, M.1
Maultzsch, J.2
Dobardzic, E.3
Reich, S.4
Milosevic, I.5
Damnjanovic, M.6
Bosak, A.7
Krisch, M.8
Thomsen, C.9
-
41
-
-
79953663259
-
Edge shape effect on vibrational modes in graphene nanoribbons: A numerical study
-
Mazzamuto, F., Saint-Martin, J., Valentin, A., Chassat, C., Doll-fus, P.: Edge shape effect on vibrational modes in graphene nanoribbons: A numerical study. J. Appl. Phys. 109, 064516 (2011)
-
(2011)
J. Appl. Phys.
, vol.109
, pp. 064516
-
-
Mazzamuto, F.1
Saint-Martin, J.2
Valentin, A.3
Chassat, C.4
Doll-Fus, P.5
-
42
-
-
79955879967
-
*-SO atomistic tight-binding model and Boltzmann transport
-
*-SO atomistic tight-binding model and Boltzmann transport. J. Electron. Mater. 40, 753-758 (2011)
-
(2011)
J. Electron. Mater.
, vol.40
, pp. 753-758
-
-
Neophytou, N.1
Kosina, H.2
-
43
-
-
7444220645
-
Electric field in atomically thin carbon films
-
DOI 10.1126/science.1102896
-
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004) (Pubitemid 39440910)
-
(2004)
Science
, vol.306
, Issue.5696
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
44
-
-
80052094409
-
Atomistic investigation of low-field mobility in graphene nanoribbons
-
Betti, A., Fiori, G., Iannaccone, G.: Atomistic investigation of low-field mobility in graphene nanoribbons. IEEE Trans. Electron Devices 58, 2824-2830 (2011)
-
(2011)
IEEE Trans. Electron Devices
, vol.58
, pp. 2824-2830
-
-
Betti, A.1
Fiori, G.2
Iannaccone, G.3
-
45
-
-
33847000175
-
Room-temperature ballistic transport in narrow graphene strips
-
Gunlycke, D., Lawler, H.M., White, C.T.: Room-temperature ballistic transport in narrow graphene strips. Phys. Rev. B 75, 085418 (2007)
-
(2007)
Phys. Rev. B
, vol.75
, pp. 085418
-
-
Gunlycke, D.1
Lawler, H.M.2
White, C.T.3
-
46
-
-
4043108064
-
Tight-binding description of graphene
-
Reich, S., Maultzsch, J., Thomsen, C., Ordejón, P.: Tight-binding description of graphene. Phys. Rev. B 66, 035412 (2002)
-
(2002)
Phys. Rev. B
, vol.66
, pp. 035412
-
-
Reich, S.1
Maultzsch, J.2
Thomsen, C.3
Ordejón, P.4
-
47
-
-
33751348065
-
Energy gaps in graphene nanoribbons
-
Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 216803
-
-
Son, Y.-W.1
Cohen, M.L.2
Louie, S.G.3
-
49
-
-
77954187671
-
Excess energy and deformation along free edges of graphene Nanoribbons
-
Lu, Q., Huang, R.: Excess energy and deformation along free edges of graphene Nanoribbons. Phys. Rev. B 81, 155410 (2010)
-
(2010)
Phys. Rev. B
, vol.81
, pp. 155410
-
-
Lu, Q.1
Huang, R.2
-
50
-
-
0034291813
-
Nanoscale device modeling: The Green's function method
-
DOI 10.1006/spmi.2000.0920
-
Datta, S.: Nanoscale device modeling: The Green's function method. Superlattices Microstruct. 28, 253-278 (2000) (Pubitemid 32031130)
-
(2000)
Superlattices and Microstructures
, vol.28
, Issue.4
, pp. 253-278
-
-
Datta, S.1
-
51
-
-
0000821265
-
Quick iterative scheme for the calculation of transfer matrices: Application to Mo (100)
-
Sancho, M.P.L., Sancho, J.M.L., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: Application to Mo (100). J. Phys. F, Met. Phys. 14, 1205-1215 (1984)
-
(1984)
J. Phys. F, Met. Phys.
, vol.14
, pp. 1205-1215
-
-
Sancho, M.P.L.1
Sancho, J.M.L.2
Rubio, J.3
-
52
-
-
51649112866
-
Modeling of nanoscale devices
-
Anantram, M., Lundstrom, M., Nikonov, D.: Modeling of nanoscale devices. Proc. IEEE 96, 1511-1550 (2008)
-
(2008)
Proc. IEEE
, vol.96
, pp. 1511-1550
-
-
Anantram, M.1
Lundstrom, M.2
Nikonov, D.3
-
53
-
-
0000868971
-
Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge
-
Sivan, U., Imry, Y.: Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. Phys. Rev. B 33, 551-558 (1986)
-
(1986)
Phys. Rev. B
, vol.33
, pp. 551-558
-
-
Sivan, U.1
Imry, Y.2
-
54
-
-
0242595934
-
Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations
-
Mingo, N.: Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 113308 (2003)
-
(2003)
Phys. Rev. B
, vol.68
, pp. 113308
-
-
Mingo, N.1
-
56
-
-
0032645347
-
Estimation of the thermal band gap of a semiconductor from Seebeck measurements
-
Goldsmid, H.J., Sharp, J.W.: Estimation of the thermal band gap of a semiconductor from Seebeck measurements. J. Electron. Mater. 28, 869-872 (1999)
-
(1999)
J. Electron. Mater.
, vol.28
, pp. 869-872
-
-
Goldsmid, H.J.1
Sharp, J.W.2
-
57
-
-
77749323301
-
Graphene nanomesh
-
Bai, J., Zhong, X., Jiang, S., Huang, Y., Duan, X.: Graphene nanomesh. Nat. Nanotechnol. 5, 190-194 (2010)
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 190-194
-
-
Bai, J.1
Zhong, X.2
Jiang, S.3
Huang, Y.4
Duan, X.5
-
58
-
-
77955547940
-
Graphene nanomesh by ZnO nanorod photocata-lysts
-
Akhavan, O.: Graphene nanomesh by ZnO nanorod photocata-lysts. ACS Nano 4, 4174-4180 (2010)
-
(2010)
ACS Nano
, vol.4
, pp. 4174-4180
-
-
Akhavan, O.1
-
59
-
-
77951053478
-
Fabrication and characterization of large-area, semiconducting nanop-erforated graphene materials
-
Kim, M., Safron, N.S., Han, E., Arnold, M.S., Gopalan, P.: Fabrication and characterization of large-area, semiconducting nanop-erforated graphene materials. Nano Lett. 10, 1125-1131 (2010)
-
(2010)
Nano Lett.
, vol.10
, pp. 1125-1131
-
-
Kim, M.1
Safron, N.S.2
Han, E.3
Arnold, M.S.4
Gopalan, P.5
-
60
-
-
77955340828
-
Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoim-print lithography
-
Liang, X., Jung, Y.-S., Wu, S., Ismach, A., Olynick, D.L., Cabrini, S., Bokor, J.: Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoim-print lithography. Nano Lett. 10, 2454-2460 (2010)
-
(2010)
Nano Lett.
, vol.10
, pp. 2454-2460
-
-
Liang, X.1
Jung, Y.-S.2
Wu, S.3
Ismach, A.4
Olynick, D.L.5
Cabrini, S.6
Bokor, J.7
-
61
-
-
70350596030
-
Quasiparticle properties of graphene antidot lattices
-
Petersen, R., Pedersen, T.G.: Quasiparticle properties of graphene antidot lattices. Phys. Rev. B 80, 113404b (2009)
-
(2009)
Phys. Rev. B
, vol.80
-
-
Petersen, R.1
Pedersen, T.G.2
-
62
-
-
77956301320
-
Symmetry-induced band-gap opening in graphene superlattices
-
Martinazzo, R., Casolo, S., Tantardini, G.F.: Symmetry-induced band-gap opening in graphene superlattices. Phys. Rev. B 81, 245420 (2010)
-
(2010)
Phys. Rev. B
, vol.81
, pp. 245420
-
-
Martinazzo, R.1
Casolo, S.2
Tantardini, G.F.3
-
63
-
-
0842343416
-
Thermopower anomaly in multiple barrier structures
-
Larsson, M., Antonyuk, V.B., Mal'shukov, A.G., Chao, K.A.: Thermopower anomaly in multiple barrier structures. Phys. Rev. B 68, 233302 (2003)
-
(2003)
Phys. Rev. B
, vol.68
, pp. 233302
-
-
Larsson, M.1
Antonyuk, V.B.2
Mal'Shukov, A.G.3
Chao, K.A.4
-
64
-
-
60949104104
-
The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons
-
Ritter, K.A., Lyding, J.W.: The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235-242 (2009)
-
(2009)
Nat. Mater.
, vol.8
, pp. 235-242
-
-
Ritter, K.A.1
Lyding, J.W.2
|