메뉴 건너뛰기




Volumn 24, Issue 9, 2010, Pages 1747-1761

Uncertainty analysis in sediment load modeling using ANN and SWAT model

Author keywords

Inverse modeling; Neural network; SUFI2; SWAT; Uncertainty analysis

Indexed keywords

DAILY RAINFALL; DATA-DRIVEN MODEL; FORESTED WATERSHEDS; INITIAL WEIGHTS; INPUT VARIABLES; INVERSE MODELING; NETWORK STRUCTURES; PREDICTION INTERVAL; PROCESS-BASED MODELS; SEDIMENT LOADS; SWAT MODEL; VALIDATION SETS;

EID: 77953322842     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-009-9522-2     Document Type: Article
Times cited : (92)

References (40)
  • 1
    • 77953325214 scopus 로고    scopus 로고
    • Abbaspour KC (2008) SWAT-CUP user manual. Federal Institute of Aquatic Science and Technology (Eawag), Swiss.
  • 2
    • 33644630066 scopus 로고    scopus 로고
    • Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure
    • Abbaspour KC, Johnson A, van Genuchten MTh (2004) Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J 3(4): 1340-1352.
    • (2004) Vadose Zone J , vol.3 , Issue.4 , pp. 1340-1352
    • Abbaspour, K.C.1    Johnson, A.2    van Genuchten, M.3
  • 4
    • 0035117652 scopus 로고    scopus 로고
    • Modelling sediment transfer in Malawi: Comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets
    • Abrahart RJ, White SM (2001) Modelling sediment transfer in Malawi: comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets. Phys Chem Earth, Part B Hydrol Oceans Atmos 26(1): 19-24.
    • (2001) Phys Chem Earth, Part B Hydrol Oceans Atmos , vol.26 , Issue.1 , pp. 19-24
    • Abrahart, R.J.1    White, S.M.2
  • 5
    • 1142294041 scopus 로고    scopus 로고
    • A soil moisture index as an auxiliary ANN input for stream flow forecasting
    • Anctila F, Michelb C, Perrinb C, Andreassianb V (2004) A soil moisture index as an auxiliary ANN input for stream flow forecasting. J Hydrol 286(1-4): 155-167.
    • (2004) J Hydrol , vol.286 , Issue.1-4 , pp. 155-167
    • Anctila, F.1    Michelb, C.2    Perrinb, C.3    Andreassianb, V.4
  • 6
    • 34547131556 scopus 로고    scopus 로고
    • Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool
    • Aqila M, Kitab I, Yanob A, Nishiyamac S (2007) Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool. J Environ Manag 85(1): 215-223.
    • (2007) J Environ Manag , vol.85 , Issue.1 , pp. 215-223
    • Aqila, M.1    Kitab, I.2    Yanob, A.3    Nishiyamac, S.4
  • 7
    • 77953322710 scopus 로고    scopus 로고
    • Barsanti A, Disperati L, Marri P, Mione A (2003) Soil erosion evaluation and multi-temporal analysis in two Brazilian basin. In: 2th international SWAT conference, Bari, Italy, 1-4 July 2003.
  • 8
    • 0027009437 scopus 로고
    • The future of distributed models: Model calibration and uncertainty prediction
    • Beven K, Binlley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(3): 279-298.
    • (1992) Hydrol Process , vol.6 , Issue.3 , pp. 279-298
    • Beven, K.1    Binlley, A.2
  • 9
    • 77953322767 scopus 로고    scopus 로고
    • Chekol DA, Tischbein B, Eggers H, Vlek P (2007) Application of SWAT for assessment of spatial distribution of water resources and analyzing impact of different land management practices on soil erosion in upper awash river basin watershed, FWU Water ResourcesPublications. Volume No: 06/2007, ISSN No. 1613-1045. pp 110-117.
  • 10
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Cigizoglu HK, Kisi O (2006) Methods to improve the neural network performance in suspended sediment estimation. J Hydrol 317(3-4): 221-238.
    • (2006) J Hydrol , vol.317 , Issue.3-4 , pp. 221-238
    • Cigizoglu, H.K.1    Kisi, O.2
  • 11
    • 32044443415 scopus 로고    scopus 로고
    • Dawson CW, Abrahart RJ, Shamseldin AY, Wilby RC (2006) Flood estimation at ungauged sites using artificial neural networks. J Hydrol 319(1-4): 391-409, Eng., ASCE 127(1): 30-37.
  • 12
    • 62949110142 scopus 로고    scopus 로고
    • Flow forecast by SWAT model and ANN in Pracana basin, Portugal
    • Demirel MC, Venancio A, Kahya E (2008) Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Adv Eng Softw 40(7): 467-473.
    • (2008) Adv Eng Softw , vol.40 , Issue.7 , pp. 467-473
    • Demirel, M.C.1    Venancio, A.2    Kahya, E.3
  • 13
    • 77953324827 scopus 로고    scopus 로고
    • Farokhnia A, Morid S (2009) Uncertainty analysis of artificial neural networks and nero-fuzzy models in river flow forecasts. Iran J Water Resour Manag (in press).
  • 14
    • 84898990528 scopus 로고    scopus 로고
    • Practical confidence and prediction interval
    • M. Mozer, M. Jordan, and T. Peskes (Eds.), Cambridge: MIT
    • Heskes T (1997) Practical confidence and prediction interval. In: Mozer M, Jordan M, Peskes T (eds) Advances in neural information processing systems 9. MIT, Cambridge, pp 466-472.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 466-472
    • Heskes, T.1
  • 15
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multi layer feedforward networks
    • Hornik K, Stinchcombe M, White H (1990) Universal approximation of an unknown mapping and its derivatives using multi layer feedforward networks. Neural Netw 3: 551-560.
    • (1990) Neural Netw , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 16
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall runoff process
    • Hsu KL, Gupta H, Sorooshian S (1995) Artificial neural network modeling of the rainfall runoff process. Water Resour Res 31(10): 2517-2530.
    • (1995) Water Resour Res , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.2    Sorooshian, S.3
  • 17
    • 77953324619 scopus 로고    scopus 로고
    • Jacobs JH, Srinivasan R (2005) Application of SWAT in developing countries using readily available data. In: 3th international SWAT conference, Zurich, 11-15 July 2005.
  • 18
    • 0034746272 scopus 로고    scopus 로고
    • Development of integrated sediment curve using ANNs
    • Jain SK (2001) Development of integrated sediment curve using ANNs. J Hydro 127: 30-37.
    • (2001) J Hydro , vol.127 , pp. 30-37
    • Jain, S.K.1
  • 19
    • 0024219557 scopus 로고
    • Analysis of the inverse problem for transient unsaturated flow
    • Kool JB, Parker JC (1988) Analysis of the inverse problem for transient unsaturated flow. Water Resour Res 24(6): 817-830.
    • (1988) Water Resour Res , vol.24 , Issue.6 , pp. 817-830
    • Kool, J.B.1    Parker, J.C.2
  • 20
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm
    • Kuczeraa G, Parent E (1998) Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. J Hydrol 211(1-4): 69-85.
    • (1998) J Hydrol , vol.211 , Issue.1-4 , pp. 69-85
    • Kuczeraa, G.1    Parent, E.2
  • 21
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk KC, Ball JE, Sharma A (2000) A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J Hydrol 227(1-4): 56-65.
    • (2000) J Hydrol , vol.227 , Issue.1-4 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 22
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ Model Softw 15(1): 101-124.
    • (2000) Environ Model Softw , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 23
    • 23044512802 scopus 로고    scopus 로고
    • A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact
    • Marce' R, Comerma M, Garcia JC, Armengol J (2004) A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact. Limnol Oceanogr 2(1): 342-355.
    • (2004) Limnol Oceanogr , vol.2 , Issue.1 , pp. 342-355
    • Marce', R.1    Comerma, M.2    Garcia, J.C.3    Armengol, J.4
  • 24
    • 0018468345 scopus 로고
    • A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
    • McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21: 239-245.
    • (1979) Technometrics , vol.21 , pp. 239-245
    • McKay, M.D.1    Beckman, R.J.2    Conover, W.J.3
  • 25
    • 77953325000 scopus 로고    scopus 로고
    • Michael W, van Liew, Arnold GJ (2005) Downstream sediment response to conservation practice implementation. In: 3th international SWAT conference, Zurich, 11-15 July 2005.
  • 26
    • 35448984537 scopus 로고    scopus 로고
    • Prioritizing structural management by quantifying the effect of land use and land cover on watershed runoff and sediment yield
    • Mishra A, Kar S, Singh VP (2007) Prioritizing structural management by quantifying the effect of land use and land cover on watershed runoff and sediment yield. Water Resour Manag (2007) 21(11): 1899-1913.
    • (2007) Water Resour Manag , vol.21 , Issue.11 , pp. 1899-1913
    • Mishra, A.1    Kar, S.2    Singh, V.P.3
  • 27
    • 77953323657 scopus 로고    scopus 로고
    • Morid S, Gosain AK, Keshari AK (2002a) Comparison of the SWAT model and ANN for daily simulation of runoff in snowbound ungauged catchments. In: Fifth international conference on hydroinformatics, Cardiff.
  • 28
    • 0036035744 scopus 로고    scopus 로고
    • Solar radiation estimation using temperature-based, stochastic and artificial neural networks approaches
    • Morid S, Gosain AK, Keshari AK (2002b) Solar radiation estimation using temperature-based, stochastic and artificial neural networks approaches. Nord Hydrol 3(4): 291-304.
    • (2002) Nord Hydrol , vol.3 , Issue.4 , pp. 291-304
    • Morid, S.1    Gosain, A.K.2    Keshari, A.K.3
  • 29
    • 77953321244 scopus 로고    scopus 로고
    • Ndomba PM, Mtalo FW, Killingtveit (2007) A Sediment yield mdeling using SWAT at larger and complex catchment: issues and approaches. A case of Pangani River catchment, Tanzania. In: 4th international SWAT conference, institute for water education Delf, The Netherlands, pp 4-6.
  • 30
    • 77953321965 scopus 로고    scopus 로고
    • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2005) Soil and water assessment tool theoretical documentation version 2005. BlackLand Research Center.
  • 31
    • 77953322333 scopus 로고    scopus 로고
    • NRC (2001) Assessing the TMDL approach to water quality management. Committee to access the scientific basis of the total maximum daily load approach to water pollution reduction, water science and technology board, division on earth and life studies, national research council, Washington, DC.
  • 32
    • 18244416394 scopus 로고    scopus 로고
    • Suspended sediment load through flood events for streams of Sakarya Basin
    • Ozturk F, Apaydin H, Walling DE (2001) Suspended sediment load through flood events for streams of Sakarya Basin. Turkish J Eng Env Tubitak 25: 643-650.
    • (2001) Turkish J Eng Env Tubitak , vol.25 , pp. 643-650
    • Ozturk, F.1    Apaydin, H.2    Walling, D.E.3
  • 33
    • 77953325604 scopus 로고    scopus 로고
    • Panagoulos Y, Polyzoi E, Mimikou M (2007) Land use change effect on river sediment yield in Western Greece. In: 4th international SWAT conference, institute for water education Delf, The Netherlands, 4-6 July 2007.
  • 34
    • 40549084354 scopus 로고    scopus 로고
    • Event-based sediment yield modeling using artificial neural network
    • Rai RK, Mathur BS (2008) Event-based sediment yield modeling using artificial neural network. Water Resour Manag 22(4): 423-441.
    • (2008) Water Resour Manag , vol.22 , Issue.4 , pp. 423-441
    • Rai, R.K.1    Mathur, B.S.2
  • 35
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur G (2002) Artificial neural networks for sheet sediment transport. Hydrol Sci J 47(6): 879-892.
    • (2002) Hydrol Sci J , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 36
    • 35348958826 scopus 로고    scopus 로고
    • A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models
    • van Griensven A, Meixner T (2007) A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models. J Hydroinform 9(4): 277-291.
    • (2007) J Hydroinform , vol.9 , Issue.4 , pp. 277-291
    • van Griensven, A.1    Meixner, T.2
  • 37
    • 77953324451 scopus 로고    scopus 로고
    • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for estimating posterior distribution of watershed model parameters. In: Duan Q, Sorooshian S, Gupta HV, Rousseau AN, Turcotte R (eds) Calibration of watershed models. AGU, Washington, DC. doi: 10. 1029/006WS07.
  • 38
    • 77953326443 scopus 로고    scopus 로고
    • Willemsen PG, Bailer CAL, Kaempf TA (2004) ICAP-Variability-Alerts joint working group meeting, Paris, 8 October 2004.
  • 39
    • 0016566114 scopus 로고
    • Sediment routing for agricultural watersheds
    • Williams JR (1975) Sediment routing for agricultural watersheds. Water Resour Bull 11(5): 965-974.
    • (1975) Water Resour Bull , vol.11 , Issue.5 , pp. 965-974
    • Williams, J.R.1
  • 40
    • 77953325951 scopus 로고    scopus 로고
    • Wischmeier WH, Smith DD (1978) Predicting rainfall losses: a guide to conservation planning. USDA Agricultural Handbook No. 537. U. S. Gov. Print. Office, Washington, DC.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.