메뉴 건너뛰기




Volumn 72, Issue 13-15, 2009, Pages 2873-2883

Division-based rainfall-runoff simulations with BP neural networks and Xinanjiang model

Author keywords

BP neural network; Data partitioning; Flood period; Rainfall runoff simulations; Xinanjiang model

Indexed keywords

BACKPROPAGATION; DEEP NEURAL NETWORKS; FLOODS; NEURAL NETWORKS; RUNOFF; SPEECH RECOGNITION; STREAM FLOW;

EID: 72449178709     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.12.032     Document Type: Article
Times cited : (127)

References (63)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • R.J. Abrahart, L. See, Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments, Hydrological Processes 14 (2000) 2157-2172.
    • (2000) Hydrological Processes , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 3
    • 0000782355 scopus 로고
    • Automated base flow separation and recession analysis techniques
    • J.G. Arnold, P.M. Allen, R. Muttiah, G. Bernhardt, Automated base flow separation and recession analysis techniques, Ground Water 33 (1995) 1010-1018.
    • (1995) Ground Water , vol.33 , pp. 1010-1018
    • Arnold, J.G.1    Allen, P.M.2    Muttiah, R.3    Bernhardt, G.4
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial neural networks in hydrology I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial neural networks in hydrology I: preliminary concepts, Journal of Hydrologic Engineering 5 (2000) 115-123.
    • (2000) Journal of Hydrologic Engineering , vol.5 , pp. 115-123
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial neural networks in hydrology II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial neural networks in hydrology II: hydrologic applications, Journal of Hydrologic Engineering 5 (2000) 124-137.
    • (2000) Journal of Hydrologic Engineering , vol.5 , pp. 124-137
  • 6
    • 0037217838 scopus 로고    scopus 로고
    • Artificial neural network modeling: A summary of successful applications relative to microbial water quality
    • G.M. Brion, S. Lingireddy, Artificial neural network modeling: a summary of successful applications relative to microbial water quality, Water Science and Technology 47 (2003) 235-240.
    • (2003) Water Science and Technology , vol.47 , pp. 235-240
    • Brion, G.M.1    Lingireddy, S.2
  • 7
    • 31044455061 scopus 로고    scopus 로고
    • Integration of artificial neural networks with conceptual models in rainfall-runoff modeling
    • J. Chen, B.J. Adams, Integration of artificial neural networks with conceptual models in rainfall-runoff modeling, Journal of Hydrology 318 (2006) 232-249.
    • (2006) Journal of Hydrology , vol.318 , pp. 232-249
    • Chen, J.1    Adams, B.J.2
  • 9
    • 47249164838 scopus 로고    scopus 로고
    • Assessing hydrological impact of potential land use change through hydrological and land use change modeling for the Kishwaukee River basin (USA)
    • W. Choi, B.M. Deal, Assessing hydrological impact of potential land use change through hydrological and land use change modeling for the Kishwaukee River basin (USA), Journal of Environmental Management 88 (2008) 1119-1130.
    • (2008) Journal of Environmental Management , vol.88 , pp. 1119-1130
    • Choi, W.1    Deal, B.M.2
  • 10
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • H.K. Cigizoglu, Estimation, forecasting and extrapolation of flow data by artificial neural networks, Hydrological Sciences Journal 48 (2003) 349-361.
    • (2003) Hydrological Sciences Journal , vol.48 , pp. 349-361
    • Cigizoglu, H.K.1
  • 11
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • H.K. Cigizoglu, Incorporation of ARMA models into flow forecasting by artificial neural networks, Environmetrics 14 (2003) 417-427.
    • (2003) Environmetrics , vol.14 , pp. 417-427
    • Cigizoglu, H.K.1
  • 12
    • 23044443211 scopus 로고    scopus 로고
    • Application of the generalized regression neural networks to intermittent flow forecasting and estimation
    • H.K. Cigizoglu, Application of the generalized regression neural networks to intermittent flow forecasting and estimation, ASCE Journal of Hydrologic Engineering 10 (2005) 336-341.
    • (2005) ASCE Journal of Hydrologic Engineering , vol.10 , pp. 336-341
    • Cigizoglu, H.K.1
  • 13
    • 27944503514 scopus 로고    scopus 로고
    • Generalized regression neural network in monthly flow forecasting
    • H.K. Cigizoglu, Generalized regression neural network in monthly flow forecasting, Civil Engineering and Environmental Systems 22 (2005) 71-84.
    • (2005) Civil Engineering and Environmental Systems , vol.22 , pp. 71-84
    • Cigizoglu, H.K.1
  • 14
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three backpropagation techniques using k-fold partitioning of neural network training data
    • H.K. Cigizoglu, O. Kisi, Flow prediction by three backpropagation techniques using k-fold partitioning of neural network training data, Nordic Hydrology 36 (2005) 1-16.
    • (2005) Nordic Hydrology , vol.36 , pp. 1-16
    • Cigizoglu, H.K.1    Kisi, O.2
  • 15
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • H.K. Cigizoglu, O. Kisi, Methods to improve the neural network performance in suspended sediment estimation, Journal of Hydrology 317 (2006) 221-238.
    • (2006) Journal of Hydrology , vol.317 , pp. 221-238
    • Cigizoglu, H.K.1    Kisi, O.2
  • 16
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems 2 (1989) 303-314.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 17
    • 0031277503 scopus 로고    scopus 로고
    • Effects of learning parameters on learning procedure and performance of a BPNN
    • H.C. Dai, C. Macbeth, Effects of learning parameters on learning procedure and performance of a BPNN, Neural Networks 10 (1997) 1505-1521.
    • (1997) Neural Networks , vol.10 , pp. 1505-1521
    • Dai, H.C.1    Macbeth, C.2
  • 18
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural networks
    • C.W. Dawson, R.L. Wilby, Hydrological modeling using artificial neural networks, Progress in Physical Geography 25 (2001) 80-108.
    • (2001) Progress in Physical Geography , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 19
    • 38049082249 scopus 로고    scopus 로고
    • Feisi Research and Development Center of Science and Technology, Electronics Industry Press, Beijing
    • Feisi Research and Development Center of Science and Technology, MATAB 6.5 Auxiliary Neural Network Analysis and Design, Electronics Industry Press, Beijing, 2003.
    • (2003) MATAB 6.5 Auxiliary Neural Network Analysis and Design
  • 20
    • 0031998129 scopus 로고    scopus 로고
    • Application example of neural networks for time series analysis: Rainfall runoff modeling
    • D. Furundzic, Application example of neural networks for time series analysis: rainfall runoff modeling, Signal Processing 64 (1998) 383-396.
    • (1998) Signal Processing , vol.64 , pp. 383-396
    • Furundzic, D.1
  • 21
    • 34047247047 scopus 로고    scopus 로고
    • Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling
    • R.D. Harmel, P.K. Smith, Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling, Journal of Hydrology 337 (2007) 326-336.
    • (2007) Journal of Hydrology , vol.337 , pp. 326-336
    • Harmel, R.D.1    Smith, P.K.2
  • 23
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • K. Hornik, M. Stinchcombe, H. White, Multilayer feed forward networks are universal approximators, Neural Networks 2 (1989) 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 24
    • 0008768705 scopus 로고
    • Applications of artificial neural network to hydrology and water resources
    • T. Hu, P. Yuan, J. Din, Applications of artificial neural network to hydrology and water resources, Advances in Water Science 11 (1995) 76-81.
    • (1995) Advances in Water Science , vol.11 , pp. 76-81
    • Hu, T.1    Yuan, P.2    Din, J.3
  • 25
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • T.S. Hu, K.C. Lam, S.T. Ng, River flow time series prediction with a range-dependent neural network, Hydrological Sciences Journal 46 (2001) 729-745.
    • (2001) Hydrological Sciences Journal , vol.46 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 26
    • 33748316537 scopus 로고    scopus 로고
    • Development of rainfall-runoff models using Takagi-Sugeno fuzzy inference systems
    • A.P. Jacquin, A.Y. Shamseldin, Development of rainfall-runoff models using Takagi-Sugeno fuzzy inference systems, Journal of Hydrology 329 (2006) 154-173.
    • (2006) Journal of Hydrology , vol.329 , pp. 154-173
    • Jacquin, A.P.1    Shamseldin, A.Y.2
  • 27
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall runoff models using integration of deterministic
    • (W04302, doi:10.1029/2003WR002355)
    • A. Jain, S. Srinivasulu, Development of effective and efficient rainfall runoff models using integration of deterministic, real-coded GA, and ANN techniques, Water Resources Research 40 (2004) (W04302, doi:10.1029/2003WR002355).
    • (2004) Real-coded GA, and ANN techniques, Water Resources Research , vol.40
    • Jain, A.1    Srinivasulu, S.2
  • 30
    • 0034931357 scopus 로고    scopus 로고
    • Introduction of wavelet analyses to rainfallrunoff relationship for a Karstic basin: The case of Licq-Atherey Karstic system, France
    • D. Labat, R. Ababou, A. Mangin, Introduction of wavelet analyses to rainfallrunoff relationship for a Karstic basin: the case of Licq-Atherey Karstic system, France, Ground Water 39 (2001) 605-615.
    • (2001) Ground Water , vol.39 , pp. 605-615
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 31
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural networks for rainfall forecasting
    • K.C. Luk, J.E. Ball, A. Sharma, A study of optimal model lag and spatial inputs to artificial neural networks for rainfall forecasting, Journal of Hydrology 227 (2000) 56-65.
    • (2000) Journal of Hydrology , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 32
    • 0033957764 scopus 로고    scopus 로고
    • Neural network for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • H.R. Maier, G.C. Dandy, Neural network for the prediction and forecasting of water resources variables: a review of modeling issues and applications, Environmental Modeling and Software 15 (2000) 101-124.
    • (2000) Environmental Modeling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 34
    • 0029748915 scopus 로고    scopus 로고
    • A neural network model of rainfall-runoff using radial basis functions
    • J.C. Mason, R.K. Price, A. Temme, A neural network model of rainfall-runoff using radial basis functions, Journal of Hydraulic Research 34 (4) (1996) 537-548.
    • (1996) Journal of Hydraulic Research , vol.34 , Issue.4 , pp. 537-548
    • Mason, J.C.1    Price, R.K.2    Temme, A.3
  • 35
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • W.S. Mcculloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics 5 (1943) 115-133.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • Mcculloch, W.S.1    Pitts, W.2
  • 36
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • A.W. Minns, M.J. Hall, Artificial neural networks as rainfall-runoff models, Hydrological Sciences Journal 41 (1996) 399-417.
    • (1996) Hydrological Sciences Journal , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 37
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, I. A discussion of principles
    • J.E. Nash, J.V. Sutcliffe, River flow forecasting through conceptual models, I. A discussion of principles, Journal of Hydrology 10 (1970) 282-290.
    • (1970) Journal of Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 38
    • 34447520115 scopus 로고    scopus 로고
    • Chaos based analytical techniques for daily extreme hydrological observations
    • W.W. Ng, U.S. Panu, W.C. Lennox, Chaos based analytical techniques for daily extreme hydrological observations, Journal of Hydrology 342 (2007) 17-41.
    • (2007) Journal of Hydrology , vol.342 , pp. 17-41
    • Ng, W.W.1    Panu, U.S.2    Lennox, W.C.3
  • 39
    • 48649085521 scopus 로고    scopus 로고
    • Estimation and forecasting of the daily suspended sediment data using wavelet-neural networks
    • T. Partal, H.K. Cigizoglu, Estimation and forecasting of the daily suspended sediment data using wavelet-neural networks, Journal of Hydrology 358 (2008) 317-331.
    • (2008) Journal of Hydrology , vol.358 , pp. 317-331
    • Partal, T.1    Cigizoglu, H.K.2
  • 40
    • 34047150355 scopus 로고    scopus 로고
    • , Integration of a detailed biogeochemical model into SWAT for improved nitrogen predictions-model development, sensitivity, and GLUE analysis
    • T. Pohlert, J.A. Huisman, L. Breuer, et al., Integration of a detailed biogeochemical model into SWAT for improved nitrogen predictions-model development, sensitivity, and GLUE analysis, Ecological Modelling 203 (2007) 215-228.
    • (2007) Ecological Modelling , vol.203 , pp. 215-228
    • Pohlert, T.1    Huisman, J.A.2    Breuer, L.3
  • 42
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • N. Sajikumar, B.S. Thandaveswara, A non-linear rainfall-runoff model using an artificial neural network, Journal of Hydrology 216 (1999) 32-55.
    • (1999) Journal of Hydrology , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 43
    • 1442304311 scopus 로고    scopus 로고
    • Long range precipitation prediction in California: A look inside the "black box", of a trained network
    • R.S. Govindaraju, A. Rao (Eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands
    • D. Silverman, J.A. Dracup, Long range precipitation prediction in California: a look inside the "black box" of a trained network, in: R.S. Govindaraju, A. Rao (Eds.), Artificial Neural Networks in Hydrology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000, pp. 311-329.
    • (2000) Artificial Neural Networks in Hydrology , pp. 311-329
    • Silverman, D.1    Dracup, J.A.2
  • 44
    • 33144460939 scopus 로고    scopus 로고
    • Identification of groundwater pollution sources using GA-based linked simulation optimization model
    • R.M. Singh, B. Datta, Identification of groundwater pollution sources using GA-based linked simulation optimization model, Journal of Hydrologic Engineering 11 (2006) 101-109.
    • (2006) Journal of Hydrologic Engineering , vol.11 , pp. 101-109
    • Singh, R.M.1    Datta, B.2
  • 45
    • 0345388118 scopus 로고
    • Hydrologic Systems
    • Prentice-Hall, Inc., Englewood Cliffs, NJ
    • V.P. Singh, Hydrologic Systems. Watershed Modeling, vol. 2, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.
    • (1989) Watershed Modeling , vol.2
    • Singh, V.P.1
  • 47
    • 0034737012 scopus 로고    scopus 로고
    • Chaos theory in hydrology: Important issues and interpretations
    • B. Sivakumar, Chaos theory in hydrology: important issues and interpretations, Journal of Hydrology 27 (2000) 1-20.
    • (2000) Journal of Hydrology , vol.27 , pp. 1-20
    • Sivakumar, B.1
  • 49
    • 85030589271 scopus 로고    scopus 로고
    • The Ministry of Water Resources of the People's Republic of China, Standard for hydrological information and hydrological forecasting, Beijing, China, China Water Power Press, Beijing, China
    • The Ministry of Water Resources of the People's Republic of China, Standard for hydrological information and hydrological forecasting, Beijing, China, China Water Power Press, Beijing, China, 2000, pp. 18-20.
    • (2000) , pp. 18-20
  • 50
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation runoff modeling using artificial neural network and conceptual models
    • A.S. Tokar, M. Markus, Precipitation runoff modeling using artificial neural network and conceptual models, Journal of Hydrology Engineering 5 (2000) 156-161.
    • (2000) Journal of Hydrology Engineering , vol.5 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 52
    • 0141759457 scopus 로고
    • Enhanced backpropagation training algorithm for transient event identification
    • J.E. Vitela, J. Reifman, Enhanced backpropagation training algorithm for transient event identification, Transactions of the American Nuclear Society 69 (1993) 148-149.
    • (1993) Transactions of the American Nuclear Society , vol.69 , pp. 148-149
    • Vitela, J.E.1    Reifman, J.2
  • 53
    • 39549106505 scopus 로고    scopus 로고
    • Long-term effects of restoration on soil hydraulic properties in revegetation-stabilized desert ecosystems
    • X.-P. Wang, M.H. Young, Z. Yu, Long-term effects of restoration on soil hydraulic properties in revegetation-stabilized desert ecosystems, Geophysical Research Letters 34 (2007) L24S22.
    • (2007) Geophysical Research Letters , vol.34
    • Wang, X.-P.1    Young, M.H.2    Yu, Z.3
  • 54
    • 0000778985 scopus 로고
    • Predicting sunspots and exchange rates with connectionist networks
    • M. Casdagli, S. Eubank (Eds.), Addison-Wesley, Redwood City, CA
    • A.S. Weigend, B.A. Huberman, D.E. Rumelhart, Predicting sunspots and exchange rates with connectionist networks, in: M. Casdagli, S. Eubank (Eds.), Nonlinear Modeling and Forecasting, Addison-Wesley, Redwood City, CA, 1992, pp. 395-432.
    • (1992) Nonlinear Modeling and Forecasting , pp. 395-432
    • Weigend, A.S.1    Huberman, B.A.2    Rumelhart, D.E.3
  • 55
    • 33750940570 scopus 로고    scopus 로고
    • Assessment of radionuclide transport uncertainty in the unsaturated zone of Yucca Mountain
    • M. Ye, F. Pan, Y.S. Wu, B. Hu, C. Shirley, Z. Yu, Assessment of radionuclide transport uncertainty in the unsaturated zone of Yucca Mountain, Advances in Water Resources 30 (2007) 118-134.
    • (2007) Advances in Water Resources , vol.30 , pp. 118-134
    • Ye, M.1    Pan, F.2    Wu, Y.S.3    Hu, B.4    Shirley, C.5    Yu, Z.6
  • 56
    • 0031127257 scopus 로고    scopus 로고
    • Efficient backpropagation learning using optimal learning rate and momentum
    • X.H. Yu, G.A. Chen, Efficient backpropagation learning using optimal learning rate and momentum, Neural Networks 10 (1997) 517-527.
    • (1997) Neural Networks , vol.10 , pp. 517-527
    • Yu, X.H.1    Chen, G.A.2
  • 57
    • 0037407748 scopus 로고    scopus 로고
    • Studies on water movement and solute transport in arid regions
    • Z. Yu, B. Hu, Studies on water movement and solute transport in arid regions, Journal of Hydrology 275 (2003) 139-260.
    • (2003) Journal of Hydrology , vol.275 , pp. 139-260
    • Yu, Z.1    Hu, B.2
  • 58
    • 0346885982 scopus 로고    scopus 로고
    • Simulating methane emission from a Chinese rice field as influenced by fertilizer and water level
    • Z. Yu, X. Shangguan, D. Pollard, E. Barron, Simulating methane emission from a Chinese rice field as influenced by fertilizer and water level, Hydrological Processes 17 (2003) 3485-3501.
    • (2003) Hydrological Processes , vol.17 , pp. 3485-3501
    • Yu, Z.1    Shangguan, X.2    Pollard, D.3    Barron, E.4
  • 60
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using bayesian concepts and modular neural networks
    • B. Zhang, S. Govindaraju, Prediction of watershed runoff using bayesian concepts and modular neural networks, Water Resources Research 36 (2000) 753-762.
    • (2000) Water Resources Research , vol.36 , pp. 753-762
    • Zhang, B.1    Govindaraju, S.2
  • 61
    • 84972817918 scopus 로고
    • Time series analysis and prediction by neural networks
    • X. Zhang, Time series analysis and prediction by neural networks, Optimization Methods and Software 4 (1994) 151-170.
    • (1994) Optimization Methods and Software , vol.4 , pp. 151-170
    • Zhang, X.1
  • 63
    • 0026895285 scopus 로고
    • The Xinanjiang model applied in China
    • R.J. Zhao, The Xinanjiang model applied in China, Journal of Hydrology 135 (1992) 371-381.
    • (1992) Journal of Hydrology , vol.135 , pp. 371-381
    • Zhao, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.