메뉴 건너뛰기




Volumn 84, Issue 1-2, 2007, Pages 111-125

Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

Author keywords

Artificial neural network; Climate variables; Suspended sediment flux; Upper Yangtze

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CATCHMENT; CLIMATE CHANGE; FLUX MEASUREMENT; INFORMATION PROCESSING; MODELING; REGRESSION ANALYSIS; SUSPENDED SEDIMENT;

EID: 33846274953     PISSN: 0169555X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.geomorph.2006.07.010     Document Type: Article
Times cited : (133)

References (46)
  • 1
    • 0035117652 scopus 로고    scopus 로고
    • Modelling sediment transfer in Malawe: comparing backpropagation neural network solution against a multiple linear regression benchmark using small data sets
    • Abrahart R.J., and White S.M. Modelling sediment transfer in Malawe: comparing backpropagation neural network solution against a multiple linear regression benchmark using small data sets. Physics and Chemistry of the Earth (B) 26 (2001) 19-24
    • (2001) Physics and Chemistry of the Earth (B) , vol.26 , pp. 19-24
    • Abrahart, R.J.1    White, S.M.2
  • 2
    • 14744288721 scopus 로고    scopus 로고
    • ANN-based sediment yield models for Vamsadhara river basin (India)
    • Agarwal A., Singh R.D., Mishra S.K., and Bhunya P.K. ANN-based sediment yield models for Vamsadhara river basin (India). Water S.A. 31 (2005) 95-100
    • (2005) Water S.A. , vol.31 , pp. 95-100
    • Agarwal, A.1    Singh, R.D.2    Mishra, S.K.3    Bhunya, P.K.4
  • 3
    • 14344261493 scopus 로고    scopus 로고
    • Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
    • Anctil F., and Lauzon N. Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions. Hydrology and Earth System Sciences 8 (2004) 940-958
    • (2004) Hydrology and Earth System Sciences , vol.8 , pp. 940-958
    • Anctil, F.1    Lauzon, N.2
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology: 1. Preliminary concepts
    • ASCE. Artificial neural networks in hydrology: 1. Preliminary concepts. Journal of Hydrologic Engineering 5 (2000) 115-123
    • (2000) Journal of Hydrologic Engineering , vol.5 , pp. 115-123
    • ASCE1
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology: 2. Hydrology applications
    • ASCE. Artificial neural networks in hydrology: 2. Hydrology applications. Journal of Hydrologic Engineering 5 (2000) 124-136
    • (2000) Journal of Hydrologic Engineering , vol.5 , pp. 124-136
    • ASCE1
  • 11
    • 33846291030 scopus 로고    scopus 로고
    • Effect of the "Changzhi" project on sediment control and reduction
    • Chuxiong (in Chinese)
    • Chuxiong Hydraulic Bureau. Effect of the "Changzhi" project on sediment control and reduction. Technical Report (1997) Chuxiong (in Chinese)
    • (1997) Technical Report
    • Chuxiong Hydraulic Bureau1
  • 12
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu H.K. Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrological Sciences Journal 48 (2003) 349-361
    • (2003) Hydrological Sciences Journal , vol.48 , pp. 349-361
    • Cigizoglu, H.K.1
  • 13
    • 0031932822 scopus 로고    scopus 로고
    • Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers
    • Clair T.A., and Ehrman J.M. Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers. Water Resources Research 34 (1998) 447-455
    • (1998) Water Resources Research , vol.34 , pp. 447-455
    • Clair, T.A.1    Ehrman, J.M.2
  • 15
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson C.W., and Wilby R.L. Hydrological modelling using artificial neural networks. Progress in Physical Geography 25 (2001) 80-108
    • (2001) Progress in Physical Geography , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 18
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 19
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K., Gupta H.V., and Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31 (1995) 2517-2530
    • (1995) Water Resources Research , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 20
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: generalisation beyond the calibration range
    • Imrie C.E., Durucan S., and Korre A. River flow prediction using artificial neural networks: generalisation beyond the calibration range. Journal of Hydrology 233 (2000) 138-153
    • (2000) Journal of Hydrology , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 21
    • 0034746272 scopus 로고    scopus 로고
    • Development of integrated sediment rating curves using ANNs
    • Jain S.K. Development of integrated sediment rating curves using ANNs. Journal of Hydraulic Engineering 127 (2001) 30-37
    • (2001) Journal of Hydraulic Engineering , vol.127 , pp. 30-37
    • Jain, S.K.1
  • 22
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptions with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation
    • Kisi Ö. Multi-layer perceptions with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrological Sciences Journal 49 (2004) 1025-1040
    • (2004) Hydrological Sciences Journal , vol.49 , pp. 1025-1040
    • Kisi, Ö.1
  • 24
    • 15544390997 scopus 로고    scopus 로고
    • Spatial variability and temporal changes of water discharge and sediment flux in the lower Jinsha tributary: impact of environmental changes
    • Lu X.X. Spatial variability and temporal changes of water discharge and sediment flux in the lower Jinsha tributary: impact of environmental changes. River Research and Applications 21 (2005) 229-243
    • (2005) River Research and Applications , vol.21 , pp. 229-243
    • Lu, X.X.1
  • 25
    • 0032171728 scopus 로고    scopus 로고
    • Recent changes of sediment yield in the Upper Yangtze, China
    • Lu X.X., and Higgitt D.L. Recent changes of sediment yield in the Upper Yangtze, China. Environmental Management 22 (1998) 697-709
    • (1998) Environmental Management , vol.22 , pp. 697-709
    • Lu, X.X.1    Higgitt, D.L.2
  • 26
    • 0037308499 scopus 로고    scopus 로고
    • Seasonal water discharge and sediment flux changes in the Upper Yangtze, China
    • Lu X.X., Ashmore P., and Wang J. Seasonal water discharge and sediment flux changes in the Upper Yangtze, China. Mountain Research and Development 23 (2003) 56-64
    • (2003) Mountain Research and Development , vol.23 , pp. 56-64
    • Lu, X.X.1    Ashmore, P.2    Wang, J.3
  • 29
    • 14944371133 scopus 로고    scopus 로고
    • Rainfall-runoff model using an artificial neural network approach
    • Raid S., and Mania J. Rainfall-runoff model using an artificial neural network approach. Mathematical and Computer Modelling 40 (2004) 839-846
    • (2004) Mathematical and Computer Modelling , vol.40 , pp. 839-846
    • Raid, S.1    Mania, J.2
  • 30
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkar M.P., Kothyari U.C., and Chaube U.C. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology 85 (2004) 96-113
    • (2004) Journal of Hydrology , vol.85 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 31
    • 0007987324 scopus 로고    scopus 로고
    • The role of distributed hydrological modelling in water resources management
    • Abbott M.B., and Refsgaard J.C. (Eds), Kluwer Academic, Boston
    • Refsgaard J.C., and Abbott M.B. The role of distributed hydrological modelling in water resources management. In: Abbott M.B., and Refsgaard J.C. (Eds). Distributed Hydrological Modeling (1996), Kluwer Academic, Boston 1-16
    • (1996) Distributed Hydrological Modeling , pp. 1-16
    • Refsgaard, J.C.1    Abbott, M.B.2
  • 33
    • 0034174278 scopus 로고    scopus 로고
    • Regional drought analysis based on neural networks
    • Shin H.S., and Salas J.D. Regional drought analysis based on neural networks. Journal of Hydraulic Engineering 5 (2000) 145-155
    • (2000) Journal of Hydraulic Engineering , vol.5 , pp. 145-155
    • Shin, H.S.1    Salas, J.D.2
  • 35
    • 0242380760 scopus 로고    scopus 로고
    • Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective
    • Syvitski J.P.M., Peckham S.D., Hilberman R., and Mulder T. Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sedimentary Geology 162 (2003) 5-24
    • (2003) Sedimentary Geology , vol.162 , pp. 5-24
    • Syvitski, J.P.M.1    Peckham, S.D.2    Hilberman, R.3    Mulder, T.4
  • 36
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur G. Artificial neural networks for sheet sediment transport. Hydrological Sciences Journal 47 (2002) 879-892
    • (2002) Hydrological Sciences Journal , vol.47 , pp. 879-892
    • Tayfur, G.1
  • 37
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar A.S., and Johnson P.A. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering 4 (1999) 232-239
    • (1999) Journal of Hydrologic Engineering , vol.4 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 38
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar A.S., and Markus M. Precipitation-runoff modeling using artificial neural networks and conceptual models. Journal of Hydrologic Engineering 5 (2000) 156-161
    • (2000) Journal of Hydrologic Engineering , vol.5 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 39
    • 0033913328 scopus 로고    scopus 로고
    • Evaluating the effects of changes in landscape structure on soil erosion by water and tillage
    • Van Oost K., Govers G., and Desmet P. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landscape Ecology 15 (2000) 577-589
    • (2000) Landscape Ecology , vol.15 , pp. 577-589
    • Van Oost, K.1    Govers, G.2    Desmet, P.3
  • 40
    • 0034874799 scopus 로고    scopus 로고
    • Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate
    • Verstraeten G., and Poesen J. Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology 40 (2001) 123-144
    • (2001) Geomorphology , vol.40 , pp. 123-144
    • Verstraeten, G.1    Poesen, J.2
  • 41
    • 0037370869 scopus 로고    scopus 로고
    • Sediment yield variability in Spain: a quantitative and semiqualitative analysis using reservoir sedimentation rates
    • Verstraeten G., Poesen J., de Vente J., and Koninckx X. Sediment yield variability in Spain: a quantitative and semiqualitative analysis using reservoir sedimentation rates. Geomorphology 50 (2003) 327-348
    • (2003) Geomorphology , vol.50 , pp. 327-348
    • Verstraeten, G.1    Poesen, J.2    de Vente, J.3    Koninckx, X.4
  • 42
    • 0021032502 scopus 로고
    • The sediment delivery problem
    • Walling D.E. The sediment delivery problem. Journal of Hydrology 65 (1983) 209-237
    • (1983) Journal of Hydrology , vol.65 , pp. 209-237
    • Walling, D.E.1
  • 43
    • 0030074908 scopus 로고    scopus 로고
    • SHESED: a physically based, distributed erosion and sediment yield component for the SHE hydrological modeling system
    • Wicks J.M., and Bathurst J.C. SHESED: a physically based, distributed erosion and sediment yield component for the SHE hydrological modeling system. Journal of Hydrology 175 (1996) 213-238
    • (1996) Journal of Hydrology , vol.175 , pp. 213-238
    • Wicks, J.M.1    Bathurst, J.C.2
  • 44
    • 33846311112 scopus 로고    scopus 로고
    • Yunnan Bureau of Water Resources and Hydropower, Tianjin Survey and Design Institute, 1987. Report on Soil Erosion in Chuxiong Prefecture. Project Report, Chuxiong (in Chinese).
  • 45
    • 17144442316 scopus 로고    scopus 로고
    • Stochastic modeling of the sediment flux of the Upper Yangtze River (China)
    • Zhou G., Goel N.K., and Bhatt V.K. Stochastic modeling of the sediment flux of the Upper Yangtze River (China). Hydrological Sciences Journal 47 (2002) S93-S105
    • (2002) Hydrological Sciences Journal , vol.47
    • Zhou, G.1    Goel, N.K.2    Bhatt, V.K.3
  • 46
    • 33846334817 scopus 로고    scopus 로고
    • Anthropogenic impact on the sediment flux in the dry-hot valleys of Southwest China - an example of the Longchuan River
    • Zhou Y., Lu X.X., Huang Y., and Zhu Y.M. Anthropogenic impact on the sediment flux in the dry-hot valleys of Southwest China - an example of the Longchuan River. Journal of Mountain Science 1 (2004) 239-249
    • (2004) Journal of Mountain Science , vol.1 , pp. 239-249
    • Zhou, Y.1    Lu, X.X.2    Huang, Y.3    Zhu, Y.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.