-
1
-
-
67249137862
-
Vertebrate animal models unravel physiological roles for zonula occludens tight junction adaptor proteins
-
Hunziker W, Kiener TK, Xu J. Vertebrate animal models unravel physiological roles for zonula occludens tight junction adaptor proteins. Ann N Y Acad Sci. 2009; 1165: 28-33.
-
(2009)
Ann N Y Acad Sci.
, vol.1165
, pp. 28-33
-
-
Hunziker, W.1
Kiener, T.K.2
Xu, J.3
-
2
-
-
38449112356
-
Amphibians as animal models for laboratory research in physiology
-
Burggren WW, Warburton S. Amphibians as animal models for laboratory research in physiology. ILAR J. 2007; 48: 260-9.
-
(2007)
ILAR J.
, vol.48
, pp. 260-269
-
-
Burggren, W.W.1
Warburton, S.2
-
3
-
-
34247186766
-
Animal models of human disease: zebrafish swim into view
-
Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007; 8: 353-67.
-
(2007)
Nat Rev Genet.
, vol.8
, pp. 353-367
-
-
Lieschke, G.J.1
Currie, P.D.2
-
4
-
-
79951510370
-
The contribution of lower vertebrate animal models in human reproduction research
-
Chianese R, Chioccarelli T, Cacciola G, et al. The contribution of lower vertebrate animal models in human reproduction research. Gen Comp Endocrinol. 2011; 171: 17-27.
-
(2011)
Gen Comp Endocrinol.
, vol.171
, pp. 17-27
-
-
Chianese, R.1
Chioccarelli, T.2
Cacciola, G.3
-
6
-
-
23144434969
-
Using Drosophila melanogaster to map human cancer pathways
-
Brumby AM, Richardson HE. Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer. 2005; 5: 626-39.
-
(2005)
Nat Rev Cancer.
, vol.5
, pp. 626-639
-
-
Brumby, A.M.1
Richardson, H.E.2
-
7
-
-
33745223646
-
Finding function in novel targets: C. elegans as a model organism
-
Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov. 2006; 5: 387-98.
-
(2006)
Nat Rev Drug Discov.
, vol.5
, pp. 387-398
-
-
Kaletta, T.1
Hengartner, M.O.2
-
8
-
-
34248598584
-
Invertebrate animal models of diseases as screening tools in drug discovery
-
Segalat L. Invertebrate animal models of diseases as screening tools in drug discovery. ACS Chem Biol. 2007; 2: 231-6.
-
(2007)
ACS Chem Biol.
, vol.2
, pp. 231-236
-
-
Segalat, L.1
-
9
-
-
79955749505
-
Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery
-
Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011; 63: 411-36.
-
(2011)
Pharmacol Rev.
, vol.63
, pp. 411-436
-
-
Pandey, U.B.1
Nichols, C.D.2
-
10
-
-
7644239149
-
Drosophila, an emerging model for cardiac disease
-
Bier E, Bodmer R. Drosophila, an emerging model for cardiac disease. Gene. 2004; 342: 1-11.
-
(2004)
Gene.
, vol.342
, pp. 1-11
-
-
Bier, E.1
Bodmer, R.2
-
11
-
-
34250212943
-
Genetic control of heart function and aging in Drosophila
-
Ocorr K, Perrin L, Lim HY, et al. Genetic control of heart function and aging in Drosophila. Trends Cardiovasc Med. 2007; 17: 177-82.
-
(2007)
Trends Cardiovasc Med.
, vol.17
, pp. 177-182
-
-
Ocorr, K.1
Perrin, L.2
Lim, H.Y.3
-
12
-
-
0034837386
-
A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster
-
Reiter LT, Potocki L, Chien S, et al. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 2001; 11: 1114-25.
-
(2001)
Genome Res.
, vol.11
, pp. 1114-1125
-
-
Reiter, L.T.1
Potocki, L.2
Chien, S.3
-
13
-
-
0028959673
-
Heart development in Drosophila and its relationship to vertebrate systems
-
Bodmer R. Heart development in Drosophila and its relationship to vertebrate systems. Trends Cardiovasc Med. 1995; 5: 21-7.
-
(1995)
Trends Cardiovasc Med.
, vol.5
, pp. 21-27
-
-
Bodmer, R.1
-
15
-
-
79955553504
-
A mighty small heart: the cardiac proteome of adult Drosophila melanogaster
-
Cammarato A, Ahrens CH, Alayari NN, et al. A mighty small heart: the cardiac proteome of adult Drosophila melanogaster. PLoS ONE. 2011; 6: e18497.
-
(2011)
PLoS ONE.
, vol.6
-
-
Cammarato, A.1
Ahrens, C.H.2
Alayari, N.N.3
-
16
-
-
0027282774
-
The gene tinman is required for specification of the heart and visceral muscles in Drosophila
-
Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development. 1993; 118: 719-29.
-
(1993)
Development.
, vol.118
, pp. 719-729
-
-
Bodmer, R.1
-
17
-
-
0029090829
-
Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5
-
Lyons I, Parsons LM, Hartley L, et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 1995; 9: 1654-66.
-
(1995)
Genes Dev.
, vol.9
, pp. 1654-1666
-
-
Lyons, I.1
Parsons, L.M.2
Hartley, L.3
-
18
-
-
0032479573
-
Congenital heart disease caused by mutations in the transcription factor NKX2-5
-
Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998; 281: 108-11.
-
(1998)
Science.
, vol.281
, pp. 108-111
-
-
Schott, J.J.1
Benson, D.W.2
Basson, C.T.3
-
19
-
-
33749317433
-
Gene regulatory networks for the development and evolution of the chordate heart
-
Satou Y, Satoh N. Gene regulatory networks for the development and evolution of the chordate heart. Genes Dev. 2006; 20: 2634-8.
-
(2006)
Genes Dev.
, vol.20
, pp. 2634-2638
-
-
Satou, Y.1
Satoh, N.2
-
20
-
-
4644242353
-
Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells
-
Kim SK, Rulifson EJ. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature. 2004; 431: 316-20.
-
(2004)
Nature.
, vol.431
, pp. 316-320
-
-
Kim, S.K.1
Rulifson, E.J.2
-
21
-
-
34548847172
-
Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila
-
Baker KD, Thummel CS. Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab. 2007; 6: 257-66.
-
(2007)
Cell Metab.
, vol.6
, pp. 257-266
-
-
Baker, K.D.1
Thummel, C.S.2
-
22
-
-
20044393471
-
Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands
-
Broughton SJ, Piper MD, Ikeya T, et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci USA. 2005; 102: 3105-10.
-
(2005)
Proc Natl Acad Sci USA.
, vol.102
, pp. 3105-3110
-
-
Broughton, S.J.1
Piper, M.D.2
Ikeya, T.3
-
23
-
-
0038522675
-
Mode of action of neuropeptides from the adipokinetic hormone family
-
Gade G, Auerswald L. Mode of action of neuropeptides from the adipokinetic hormone family. Gen Comp Endocrinol. 2003; 132: 10-20.
-
(2003)
Gen Comp Endocrinol.
, vol.132
, pp. 10-20
-
-
Gade, G.1
Auerswald, L.2
-
24
-
-
0028906170
-
Identification and expression of the Drosophila adipokinetic hormone gene
-
Noyes BE, Katz FN, Schaffer MH. Identification and expression of the Drosophila adipokinetic hormone gene. Mol Cell Endocrinol. 1995; 109: 133-41.
-
(1995)
Mol Cell Endocrinol.
, vol.109
, pp. 133-141
-
-
Noyes, B.E.1
Katz, F.N.2
Schaffer, M.H.3
-
25
-
-
2942590660
-
Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster
-
Lee G, Park JH. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics. 2004; 167: 311-23.
-
(2004)
Genetics.
, vol.167
, pp. 311-323
-
-
Lee, G.1
Park, J.H.2
-
26
-
-
12344305171
-
AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila
-
Isabel G, Martin JR, Chidami S, et al. AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am J Physiol Regul Integr Comp Physiol. 2005; 288: R531-8.
-
(2005)
Am J Physiol Regul Integr Comp Physiol.
, vol.288
-
-
Isabel, G.1
Martin, J.R.2
Chidami, S.3
-
27
-
-
0141733277
-
A nutrient sensor mechanism controls Drosophila growth
-
Colombani J, Raisin S, Pantalacci S, et al.A nutrient sensor mechanism controls Drosophila growth. Cell. 2003; 114: 739-49.
-
(2003)
Cell.
, vol.114
, pp. 739-749
-
-
Colombani, J.1
Raisin, S.2
Pantalacci, S.3
-
28
-
-
78049425280
-
High fat diet-induced obesity and heart dysfunction is regulated by the TOR pathway in the Drosophila model
-
Birse R, Choi J, Reardon K, et al. High fat diet-induced obesity and heart dysfunction is regulated by the TOR pathway in the Drosophila model. Cell Metab. 2010; 12: 533-44.
-
(2010)
Cell Metab.
, vol.12
, pp. 533-544
-
-
Birse, R.1
Choi, J.2
Reardon, K.3
-
29
-
-
81455136679
-
A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila
-
Musselman LP, Fink JL, Narzinski K, et al.A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech. 2011; 4: 842-9.
-
(2011)
Dis Model Mech.
, vol.4
, pp. 842-849
-
-
Musselman, L.P.1
Fink, J.L.2
Narzinski, K.3
-
30
-
-
47249095129
-
The metabolic syndrome: a historical context
-
Crepaldi G, Maggi, S. The metabolic syndrome: a historical context. Diabetes Voice. 2006; 51: 8-10.
-
(2006)
Diabetes Voice.
, vol.51
, pp. 8-10
-
-
Crepaldi, G.1
Maggi, S.2
-
31
-
-
64949151149
-
A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts
-
Fink M, Callol-Massot C, Chu A, et al. A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. BioTechniques. 2009; 46: 101-13.
-
(2009)
BioTechniques.
, vol.46
, pp. 101-113
-
-
Fink, M.1
Callol-Massot, C.2
Chu, A.3
-
32
-
-
77749264562
-
Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies
-
Lee JH, Budanov AV, Park EJ, et al. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science. 2010; 327: 1223-8.
-
(2010)
Science.
, vol.327
, pp. 1223-1228
-
-
Lee, J.H.1
Budanov, A.V.2
Park, E.J.3
-
33
-
-
78651490662
-
Phospholipid homeostasis regulates lipid metabolism and cardiac function through SREBP signaling in Drosophila
-
Lim HY, Wang W, Wessells RJ, et al. Phospholipid homeostasis regulates lipid metabolism and cardiac function through SREBP signaling in Drosophila. Genes Dev. 2011; 25: 189-200.
-
(2011)
Genes Dev.
, vol.25
, pp. 189-200
-
-
Lim, H.Y.1
Wang, W.2
Wessells, R.J.3
-
34
-
-
33744544947
-
Fatty acid auxotrophy in Drosophila larvae lacking SREBP
-
Kunte AS, Matthews KA, Rawson RB. Fatty acid auxotrophy in Drosophila larvae lacking SREBP. Cell Metab. 2006; 3: 439-48.
-
(2006)
Cell Metab.
, vol.3
, pp. 439-448
-
-
Kunte, A.S.1
Matthews, K.A.2
Rawson, R.B.3
-
35
-
-
79961165137
-
mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson TR, Sengupta SS, Harris TE, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146: 408-20.
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
Sengupta, S.S.2
Harris, T.E.3
-
36
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver P, Wu Z, Park CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998; 92: 829-39.
-
(1998)
Cell.
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
Wu, Z.2
Park, C.W.3
-
37
-
-
0033977890
-
The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
-
Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 2000; 20: 1868-76.
-
(2000)
Mol Cell Biol.
, vol.20
, pp. 1868-1876
-
-
Vega, R.B.1
Huss, J.M.2
Kelly, D.P.3
-
38
-
-
0037326196
-
Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator
-
Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003; 24: 78-90.
-
(2003)
Endocr Rev.
, vol.24
, pp. 78-90
-
-
Puigserver, P.1
Spiegelman, B.M.2
-
39
-
-
8844276054
-
Regulation of muscle fiber type and running endurance by PPARdelta
-
Wang YX, Zhang CL, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2004; 2: e294.
-
(2004)
PLoS Biol.
, vol.2
-
-
Wang, Y.X.1
Zhang, C.L.2
Yu, R.T.3
-
40
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
-
Lin J, Wu PH, Tarr PT, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 2004; 119: 121-35.
-
(2004)
Cell.
, vol.119
, pp. 121-135
-
-
Lin, J.1
Wu, P.H.2
Tarr, P.T.3
-
41
-
-
79959635928
-
Separation of the gluconeogenic and mitochondrial functions of PGC-1{alpha} through S6 kinase
-
Lustig Y, Ruas JL, Estall JL, et al. Separation of the gluconeogenic and mitochondrial functions of PGC-1{alpha} through S6 kinase. Genes Dev. 2011; 25: 1232-44.
-
(2011)
Genes Dev.
, vol.25
, pp. 1232-1244
-
-
Lustig, Y.1
Ruas, J.L.2
Estall, J.L.3
-
42
-
-
0033803048
-
Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis
-
Lehman JJ, Barger PM, Kovacs A, et al. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000; 106: 847-56.
-
(2000)
J Clin Invest.
, vol.106
, pp. 847-856
-
-
Lehman, J.J.1
Barger, P.M.2
Kovacs, A.3
-
43
-
-
80052812434
-
The PGC-1 cascade as a therapeutic target for heart failure
-
Schilling J, Kelly DP. The PGC-1 cascade as a therapeutic target for heart failure. J Mol Cell Cardiol. 2011; 51: 578-83.
-
(2011)
J Mol Cell Cardiol.
, vol.51
, pp. 578-583
-
-
Schilling, J.1
Kelly, D.P.2
-
44
-
-
47549114849
-
Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart
-
Lai L, Leone TC, Zechner C, et al. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 2008; 22: 1948-61.
-
(2008)
Genes Dev.
, vol.22
, pp. 1948-1961
-
-
Lai, L.1
Leone, T.C.2
Zechner, C.3
-
45
-
-
34248207609
-
High-resolution dynamics of the transcriptional response to nutrition in Drosophila: a key role for dFOXO
-
Gershman B, Puig O, Hang L, et al. High-resolution dynamics of the transcriptional response to nutrition in Drosophila: a key role for dFOXO. Physiol Genomics. 2007; 29: 24-34.
-
(2007)
Physiol Genomics.
, vol.29
, pp. 24-34
-
-
Gershman, B.1
Puig, O.2
Hang, L.3
-
46
-
-
75649131899
-
The Drosophila PGC-1 homologue Spargel coordinates mitochondrial activity to insulin signalling
-
Tiefenbock SK, Baltzer C, Egli NA, et al. The Drosophila PGC-1 homologue Spargel coordinates mitochondrial activity to insulin signalling. EMBO J. 2010; 29: 171-83.
-
(2010)
EMBO J.
, vol.29
, pp. 171-183
-
-
Tiefenbock, S.K.1
Baltzer, C.2
Egli, N.A.3
|