-
1
-
-
0000642664
-
Satellite cell of skeletal muscle fibers
-
Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961; 9: 493-5.
-
(1961)
J Biophys Biochem Cytol
, vol.9
, pp. 493-495
-
-
Mauro, A.1
-
2
-
-
37549054341
-
The emerging biology of satellite cells and their therapeutic potential
-
Kuang S, Rudnicki MA. The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med. 2008; 14: 82-91.
-
(2008)
Trends Mol Med
, vol.14
, pp. 82-91
-
-
Kuang, S.1
Rudnicki, M.A.2
-
3
-
-
0034918907
-
Myogenic satellite cells: physiology to molecular biology
-
Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. 2001; 91: 534-51.
-
(2001)
J Appl Physiol
, vol.91
, pp. 534-551
-
-
Hawke, T.J.1
Garry, D.J.2
-
5
-
-
0018113760
-
Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study
-
Schultz E, Gibson MC, Champion T. Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool. 1978; 206: 451-6.
-
(1978)
J Exp Zool
, vol.206
, pp. 451-456
-
-
Schultz, E.1
Gibson, M.C.2
Champion, T.3
-
6
-
-
0031573026
-
Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells
-
Cornelison DD, Wold BJ. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol. 1997; 191: 270-83.
-
(1997)
Dev Biol
, vol.191
, pp. 270-283
-
-
Cornelison, D.D.1
Wold, B.J.2
-
7
-
-
77950238226
-
Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications
-
Ciciliot S, Schiaffino S. Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des. 2010; 16: 906-14.
-
(2010)
Curr Pharm Des
, vol.16
, pp. 906-914
-
-
Ciciliot, S.1
Schiaffino, S.2
-
8
-
-
0347989458
-
Cellular and molecular regulation of muscle regeneration
-
Chargé SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004; 84: 209-38.
-
(2004)
Physiol Rev
, vol.84
, pp. 209-238
-
-
Chargé, S.B.1
Rudnicki, M.A.2
-
9
-
-
75349084003
-
Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration
-
Shea KL, Xiang W, Laporta VS, et al. Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell. 2010; 6: 117-29.
-
(2010)
Cell Stem Cell
, vol.6
, pp. 117-129
-
-
Shea, K.L.1
Xiang, W.2
Laporta, V.S.3
-
10
-
-
14344261557
-
Skeletal muscle satellite cells: timelapse videomicroscopic evidence that renewal is stochastic
-
Angello JC, Hauschka SD. Skeletal muscle satellite cells: timelapse videomicroscopic evidence that renewal is stochastic. BAM. 1996; 6: 491-502.
-
(1996)
BAM
, vol.6
, pp. 491-502
-
-
Angello, J.C.1
Hauschka, S.D.2
-
11
-
-
0029864158
-
Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells
-
Baroffio A, Hamann M, Bernheim L, et al. Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells. Differentiation. 1996; 60: 47-57.
-
(1996)
Differentiation
, vol.60
, pp. 47-57
-
-
Baroffio, A.1
Hamann, M.2
Bernheim, L.3
-
12
-
-
22744438723
-
Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche
-
Collins CA, Olsen I, Zammit PS, et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell. 2005; 122: 289-301.
-
(2005)
Cell
, vol.122
, pp. 289-301
-
-
Collins, C.A.1
Olsen, I.2
Zammit, P.S.3
-
13
-
-
14344260445
-
Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal
-
Olguin HC, Olwin BB. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol. 2004; 275: 375-88.
-
(2004)
Dev Biol
, vol.275
, pp. 375-388
-
-
Olguin, H.C.1
Olwin, B.B.2
-
14
-
-
0022759028
-
Absence of exogenous satellite cell contribution to regeneration of frozen skeletal muscle
-
Schultz E, Jaryszak DL, Gibson MC, et al. Absence of exogenous satellite cell contribution to regeneration of frozen skeletal muscle. J Muscle Res Cell Motil. 1986; 7: 361-7.
-
(1986)
J Muscle Res Cell Motil
, vol.7
, pp. 361-367
-
-
Schultz, E.1
Jaryszak, D.L.2
Gibson, M.C.3
-
15
-
-
3543123015
-
-
Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?
-
Zammit PS, Golding JP, Nagata Y, et al. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol. 2004; 166: 347-57.
-
(2004)
J Cell Biol
, vol.166
, pp. 347-357
-
-
Zammit, P.S.1
Golding, J.P.2
Nagata, Y.3
-
16
-
-
34249108083
-
Asymmetric self-renewal and commitment of satellite stem cells in muscle
-
Kuang S, Kuroda K, Le Grand F, et al. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 2007; 129: 999-1010.
-
(2007)
Cell
, vol.129
, pp. 999-1010
-
-
Kuang, S.1
Kuroda, K.2
Le Grand, F.3
-
17
-
-
36849049287
-
Myostatin signals through Pax7 to regulate satellite cell self-renewal
-
McFarlane C, Hennebry A, Thomas M, et al. Myostatin signals through Pax7 to regulate satellite cell self-renewal. Exp Cell Res. 2008; 314: 317-29.
-
(2008)
Exp Cell Res
, vol.314
, pp. 317-329
-
-
McFarlane, C.1
Hennebry, A.2
Thomas, M.3
-
18
-
-
57049179526
-
Self-renewal and expansion of single transplanted muscle stem cells
-
Sacco A, Doyonnas R, Kraft P, et al. Self-renewal and expansion of single transplanted muscle stem cells. Nature. 2008; 456: 502-6.
-
(2008)
Nature
, vol.456
, pp. 502-506
-
-
Sacco, A.1
Doyonnas, R.2
Kraft, P.3
-
20
-
-
34247236574
-
Stem and progenitor cells in skeletal muscle development, maintenance, and therapy
-
Peault B, Rudnicki M, Torrente Y, et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther. 2007; 15: 867-77.
-
(2007)
Mol Ther
, vol.15
, pp. 867-877
-
-
Peault, B.1
Rudnicki, M.2
Torrente, Y.3
-
21
-
-
33745625628
-
Muscle stem cells in development, regeneration, and disease
-
Shi X, Garry DJ. Muscle stem cells in development, regeneration, and disease. Genes Dev. 2006; 20: 1692-708.
-
(2006)
Genes Dev
, vol.20
, pp. 1692-1708
-
-
Shi, X.1
Garry, D.J.2
-
22
-
-
0035503877
-
Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration
-
Cornelison DD, Filla MS, Stanley HM, et al. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol. 2001; 239: 79-94.
-
(2001)
Dev Biol
, vol.239
, pp. 79-94
-
-
Cornelison, D.D.1
Filla, M.S.2
Stanley, H.M.3
-
23
-
-
35348875982
-
Molecular signature of quiescent satellite cells in adult skeletal muscle
-
Fukada S, Uezumi A, Ikemoto M, et al. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells. 2007; 25: 2448-59.
-
(2007)
Stem Cells
, vol.25
, pp. 2448-2459
-
-
Fukada, S.1
Uezumi, A.2
Ikemoto, M.3
-
24
-
-
33745009522
-
BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation
-
Mousavi K, Jasmin BJ. BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J Neurosci. 2006; 26: 5739-49.
-
(2006)
J Neurosci
, vol.26
, pp. 5739-5749
-
-
Mousavi, K.1
Jasmin, B.J.2
-
25
-
-
0041524099
-
Sox8 is a specific marker for muscle satellite cells and inhibits myogenesis
-
Schmidt K, Glaser G, Wernig A, et al. Sox8 is a specific marker for muscle satellite cells and inhibits myogenesis. J Biol Chem. 2003; 278: 29769-75.
-
(2003)
J Biol Chem
, vol.278
, pp. 29769-29775
-
-
Schmidt, K.1
Glaser, G.2
Wernig, A.3
-
26
-
-
0034664770
-
Pax7 is required for the specification of myogenic satellite cells
-
Seale P, Sabourin LA, Girgis-Gabardo A, et al. Pax7 is required for the specification of myogenic satellite cells. Cell. 2000; 102: 777-86.
-
(2000)
Cell
, vol.102
, pp. 777-786
-
-
Seale, P.1
Sabourin, L.A.2
Girgis-Gabardo, A.3
-
27
-
-
29944440269
-
Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis
-
Kuang S, Chargé SB, Seale P, et al. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol. 2006; 172: 103-13.
-
(2006)
J Cell Biol
, vol.172
, pp. 103-113
-
-
Kuang, S.1
Chargé, S.B.2
Seale, P.3
-
28
-
-
29944432793
-
Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells
-
Relaix F, Montarras D, Zaffran S, et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol. 2006; 172: 91-102.
-
(2006)
J Cell Biol
, vol.172
, pp. 91-102
-
-
Relaix, F.1
Montarras, D.2
Zaffran, S.3
-
29
-
-
34249880105
-
Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination
-
Olguin HC, Yang Z, Tapscott SJ, et al. Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. J Cell Biol. 2007; 177: 769-79.
-
(2007)
J Cell Biol
, vol.177
, pp. 769-779
-
-
Olguin, H.C.1
Yang, Z.2
Tapscott, S.J.3
-
30
-
-
37749009724
-
Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex
-
McKinnell IW, Ishibashi J, Le Grand F, et al. Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Biol. 2008; 10: 77-84.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 77-84
-
-
McKinnell, I.W.1
Ishibashi, J.2
Le Grand, F.3
-
31
-
-
84887212617
-
Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation
-
doi: 10.1371/journal.pone.0004475
-
Collins CA, Gnocchi VF, White RB, et al. Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation. PLoS One. 2009; doi: 10.1371/journal.pone.0004475.
-
(2009)
PLoS One.
-
-
Collins, C.A.1
Gnocchi, V.F.2
White, R.B.3
-
32
-
-
67949085111
-
Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements
-
Lepper C, Conway SJ, Fan CM. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature. 2009; 460: 627-31.
-
(2009)
Nature
, vol.460
, pp. 627-631
-
-
Lepper, C.1
Conway, S.J.2
Fan, C.M.3
-
33
-
-
36248952802
-
The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions
-
Buckingham M, Relaix F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol. 2007; 23: 645-73.
-
(2007)
Annu Rev Cell Dev Biol
, vol.23
, pp. 645-673
-
-
Buckingham, M.1
Relaix, F.2
-
34
-
-
0036139494
-
Getting your Pax straight: Pax proteins in development and disease
-
Chi N, Epstein JA. Getting your Pax straight: Pax proteins in development and disease. Trends Genet. 2002; 18: 41-7.
-
(2002)
Trends Genet
, vol.18
, pp. 41-47
-
-
Chi, N.1
Epstein, J.A.2
-
35
-
-
30144439616
-
A PANorama of PAX genes in cancer and development
-
Robson EJ, He SJ, Eccles MR. A PANorama of PAX genes in cancer and development. Nat Rev Cancer. 2006; 6: 52-62.
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 52-62
-
-
Robson, E.J.1
He, S.J.2
Eccles, M.R.3
-
36
-
-
33845331336
-
PAX genes: roles in development, pathophysiology, and cancer
-
Lang D, Powell SK, Plummer RS, et al. PAX genes: roles in development, pathophysiology, and cancer. Biochem Pharmacol. 2007; 73: 1-14.
-
(2007)
Biochem Pharmacol
, vol.73
, pp. 1-14
-
-
Lang, D.1
Powell, S.K.2
Plummer, R.S.3
-
37
-
-
56249124919
-
Pax genes in embryogenesis and oncogenesis
-
Wang Q, Fang WH, Krupinski J, et al. Pax genes in embryogenesis and oncogenesis. J Cell Mol Med. 2008; 12: 2281-94.
-
(2008)
J Cell Mol Med
, vol.12
, pp. 2281-2294
-
-
Wang, Q.1
Fang, W.H.2
Krupinski, J.3
-
38
-
-
0028205002
-
Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells
-
Bober E, Franz T, Arnold HH, et al. Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development. 1994; 120: 603-12.
-
(1994)
Development
, vol.120
, pp. 603-612
-
-
Bober, E.1
Franz, T.2
Arnold, H.H.3
-
39
-
-
0028205049
-
Regulation of Pax-3 expression in the dermomyotome and its role in muscle development
-
Goulding M, Lumsden A, Paquette AJ. Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development. 1994; 120: 957-71.
-
(1994)
Development
, vol.120
, pp. 957-971
-
-
Goulding, M.1
Lumsden, A.2
Paquette, A.J.3
-
40
-
-
0030891169
-
Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD
-
Tajbakhsh S, Rocancourt D, Cossu G, et al. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell. 1997; 89: 127-38.
-
(1997)
Cell
, vol.89
, pp. 127-138
-
-
Tajbakhsh, S.1
Rocancourt, D.2
Cossu, G.3
-
41
-
-
14844353915
-
Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates
-
Ben-Yair R, Kalcheim C. Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development. 2005; 132: 689-701.
-
(2005)
Development
, vol.132
, pp. 689-701
-
-
Ben-Yair, R.1
Kalcheim, C.2
-
42
-
-
20544453237
-
A common somitic origin for embryonic muscle progenitors and satellite cells
-
Gros J, Manceau M, Thomé V, et al. A common somitic origin for embryonic muscle progenitors and satellite cells. Nature. 2005; 435: 954-8.
-
(2005)
Nature
, vol.435
, pp. 954-958
-
-
Gros, J.1
Manceau, M.2
Thomé, V.3
-
43
-
-
22344444869
-
Pax3/Pax7 mark a novel population of primitive myogenic cells during development
-
Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, et al. Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev. 2005; 19: 1426-31.
-
(2005)
Genes Dev
, vol.19
, pp. 1426-1431
-
-
Kassar-Duchossoy, L.1
Giacone, E.2
Gayraud-Morel, B.3
-
44
-
-
20544441737
-
A Pax3/Pax7-dependent population of skeletal muscle progenitor cells
-
Relaix F, Rocancourt D, Mansouri A, et al. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature. 2005; 435: 948-53.
-
(2005)
Nature
, vol.435
, pp. 948-953
-
-
Relaix, F.1
Rocancourt, D.2
Mansouri, A.3
-
45
-
-
0037112338
-
Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury
-
LaBarge MA, Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell. 2002; 111: 589-601.
-
(2002)
Cell
, vol.111
, pp. 589-601
-
-
LaBarge, M.A.1
Blau, H.M.2
-
46
-
-
34147173390
-
A population of myogenic stem cells that survives skeletal muscle aging
-
Collins CA, Zammit PS, Ruiz AP, et al. A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells. 2007; 25: 885-94.
-
(2007)
Stem Cells
, vol.25
, pp. 885-894
-
-
Collins, C.A.1
Zammit, P.S.2
Ruiz, A.P.3
-
47
-
-
77950348353
-
Embryonic versus. adult myogenesis: challenging the 'regeneration recapitulates development' paradigm
-
Wang J, Conboy I. Embryonic versus. adult myogenesis: challenging the 'regeneration recapitulates development' paradigm. J Mol Cell Biol. 2010; 2: 1-4.
-
(2010)
J Mol Cell Biol
, vol.2
, pp. 1-4
-
-
Wang, J.1
Conboy, I.2
-
48
-
-
2442711201
-
Pax7 distribution in human skeletal muscle biopsies and myogenic tissue cultures
-
Reimann J, Brimah K, Schröder R, et al. Pax7 distribution in human skeletal muscle biopsies and myogenic tissue cultures. Cell Tissue Res. 2004; 315: 233-42.
-
(2004)
Cell Tissue Res
, vol.315
, pp. 233-242
-
-
Reimann, J.1
Brimah, K.2
Schröder, R.3
-
49
-
-
0023663888
-
Expression of a single transfected cDNA converts fibroblasts to myoblasts
-
Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987; 51: 987-1000.
-
(1987)
Cell
, vol.51
, pp. 987-1000
-
-
Davis, R.L.1
Weintraub, H.2
Lassar, A.B.3
-
50
-
-
0024381667
-
Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD
-
Weintraub H, Tapscott SJ, Davis RL, et al. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci USA. 1989; 86: 5434-8.
-
(1989)
Proc Natl Acad Sci USA
, vol.86
, pp. 5434-5438
-
-
Weintraub, H.1
Tapscott, S.J.2
Davis, R.L.3
-
51
-
-
33744518925
-
Pax7 and myogenic progression in skeletal muscle satellite cells
-
Zammit PS, Relaix F, Nagata Y, et al. Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci. 2006; 119: 1824-32.
-
(2006)
J Cell Sci
, vol.119
, pp. 1824-1832
-
-
Zammit, P.S.1
Relaix, F.2
Nagata, Y.3
-
52
-
-
67749132526
-
Id3 is a direct transcriptional target of Pax7 in quiescent satellite cells
-
Kumar D, Shadrach JL, Wagers AJ, et al. Id3 is a direct transcriptional target of Pax7 in quiescent satellite cells. Mol Biol Cell. 2009; 20: 3170-7.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 3170-3177
-
-
Kumar, D.1
Shadrach, J.L.2
Wagers, A.J.3
-
53
-
-
0029074993
-
Pax3 inhibits myogenic differentiation of cultured myoblast cells
-
Epstein JA, Lam P, Jepeal L, et al. Pax3 inhibits myogenic differentiation of cultured myoblast cells. J Biol Chem. 1995; 270: 11719-22.
-
(1995)
J Biol Chem
, vol.270
, pp. 11719-11722
-
-
Epstein, J.A.1
Lam, P.2
Jepeal, L.3
-
54
-
-
33745892938
-
Control of muscle regeneration in the Xenopus tadpole tail by Pax7
-
Chen Y, Lin G, Slack JM. Control of muscle regeneration in the Xenopus tadpole tail by Pax7. Development. 2006; 133: 2303-13.
-
(2006)
Development
, vol.133
, pp. 2303-2313
-
-
Chen, Y.1
Lin, G.2
Slack, J.M.3
-
55
-
-
77649273813
-
Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development
-
Mitchell KJ, Pannérec A, Cadot B, et al. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol. 2010; 12: 257-66.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 257-266
-
-
Mitchell, K.J.1
Pannérec, A.2
Cadot, B.3
-
57
-
-
0033906468
-
Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3
-
Potterf SB, Furumura M, Dunn KJ, et al. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet. 2000; 107: 1-6.
-
(2000)
Hum Genet
, vol.107
, pp. 1-6
-
-
Potterf, S.B.1
Furumura, M.2
Dunn, K.J.3
-
58
-
-
14544303647
-
Pax3 functions at a nodal point in melanocyte stem cell differentiation
-
Lang D, Lu MM, Huang L, et al. Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature. 2005; 433: 884-7.
-
(2005)
Nature
, vol.433
, pp. 884-887
-
-
Lang, D.1
Lu, M.M.2
Huang, L.3
-
59
-
-
0035839886
-
Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma
-
Barr FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene. 2001; 20: 5736-46.
-
(2001)
Oncogene
, vol.20
, pp. 5736-5746
-
-
Barr, F.G.1
-
60
-
-
0030860934
-
Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma
-
Davis RJ, Barr FG. Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA. 1997; 94: 8047-51.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 8047-8051
-
-
Davis, R.J.1
Barr, F.G.2
-
61
-
-
0028881603
-
The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3
-
Fredericks WJ, Galili N, Mukhopadhyay S, et al. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol. 1995; 15: 1522-35.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 1522-1535
-
-
Fredericks, W.J.1
Galili, N.2
Mukhopadhyay, S.3
-
62
-
-
0029154584
-
Wild type PAX3 protein and the PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma contain potent, structurally distinct transcriptional activation domains
-
Bennicelli JL, Fredericks WJ, Wilson RB, et al. Wild type PAX3 protein and the PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma contain potent, structurally distinct transcriptional activation domains. Oncogene. 1995; 11: 119-30.
-
(1995)
Oncogene
, vol.11
, pp. 119-130
-
-
Bennicelli, J.L.1
Fredericks, W.J.2
Wilson, R.B.3
-
63
-
-
0029980113
-
Mechanism for transcriptional gain of function resulting from chromosomal translocation in alveolar rhabdomyosarcoma
-
Bennicelli JL, Edwards RH, Barr FG. Mechanism for transcriptional gain of function resulting from chromosomal translocation in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA. 1996; 93: 5455-9.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 5455-5459
-
-
Bennicelli, J.L.1
Edwards, R.H.2
Barr, F.G.3
-
64
-
-
33746895755
-
Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas
-
Davicioni E, Finckenstein FG, Shahbazian V, et al. Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res. 2006; 66: 6936-46.
-
(2006)
Cancer Res
, vol.66
, pp. 6936-6946
-
-
Davicioni, E.1
Finckenstein, F.G.2
Shahbazian, V.3
-
65
-
-
77955739897
-
Genome-wide identification of PAX3-FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer
-
Cao L, Yu Y, Bilke S, et al. Genome-wide identification of PAX3-FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer. Cancer Res. 2010; 70: 6497-508.
-
(2010)
Cancer Res
, vol.70
, pp. 6497-6508
-
-
Cao, L.1
Yu, Y.2
Bilke, S.3
-
66
-
-
41149114723
-
PAX-FKHR function as pangenes by simultaneously inducing and inhibiting myogenesis
-
Graf Finckenstein F, Shahbazian V, Davicioni E, et al. PAX-FKHR function as pangenes by simultaneously inducing and inhibiting myogenesis. Oncogene. 2008; 27: 2004-14.
-
(2008)
Oncogene
, vol.27
, pp. 2004-2014
-
-
Graf Finckenstein, F.1
Shahbazian, V.2
Davicioni, E.3
-
67
-
-
0033539498
-
cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene
-
Khan J, Bittner ML, Saal LH, et al. cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proc Natl Acad Sci USA. 1999; 96: 13264-9.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 13264-13269
-
-
Khan, J.1
Bittner, M.L.2
Saal, L.H.3
-
68
-
-
79953675071
-
PAX7-FKHR transcriptional activity is enhanced by transcriptionally repressed MyoD
-
Olguín HC, Patzlaf NE, Olwin BB. PAX7-FKHR transcriptional activity is enhanced by transcriptionally repressed MyoD. J Cell Biochem. 2011; 112: 1410-17.
-
(2011)
J Cell Biochem
, vol.112
, pp. 1410-1417
-
-
Olguín, H.C.1
Patzlaf, N.E.2
Olwin, B.B.3
-
69
-
-
0037431083
-
SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells
-
Kim J, Lo L, Dormand E, et al. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron. 2003; 38: 17-31.
-
(2003)
Neuron
, vol.38
, pp. 17-31
-
-
Kim, J.1
Lo, L.2
Dormand, E.3
-
70
-
-
0033533891
-
Commitment to the B-lymphoid lineage depends on the transcription factor Pax5
-
Nutt SL, Heavey B, Rolink AG, et al. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999; 401: 556-62.
-
(1999)
Nature
, vol.401
, pp. 556-562
-
-
Nutt, S.L.1
Heavey, B.2
Rolink, A.G.3
-
71
-
-
0037025198
-
Reversion of B cell commitment upon loss of Pax5 expression
-
Mikkola I, Heavey B, Horcher M, et al. Reversion of B cell commitment upon loss of Pax5 expression. Science. 2002; 297: 110-13.
-
(2002)
Science
, vol.297
, pp. 110-113
-
-
Mikkola, I.1
Heavey, B.2
Horcher, M.3
-
72
-
-
0035815295
-
Pax6 is required for the multipotent state of retinal progenitor cells
-
Marquardt T, Ashery-Padan R, Andrejewski N, et al. Pax6 is required for the multipotent state of retinal progenitor cells. Cell. 2001; 105: 43-55.
-
(2001)
Cell
, vol.105
, pp. 43-55
-
-
Marquardt, T.1
Ashery-Padan, R.2
Andrejewski, N.3
-
73
-
-
58349107112
-
Dual requirement for Pax6 in retinal progenitor cells
-
Oron-Karni V, Farhy C, Elgart M, et al. Dual requirement for Pax6 in retinal progenitor cells. Development. 2008; 135: 4037-47.
-
(2008)
Development
, vol.135
, pp. 4037-4047
-
-
Oron-Karni, V.1
Farhy, C.2
Elgart, M.3
-
74
-
-
53449094128
-
New regulators of vertebrate appendage regeneration
-
Yin VP, Poss KD. New regulators of vertebrate appendage regeneration. Curr Opin Genet Dev. 2008; 18: 381-6.
-
(2008)
Curr Opin Genet Dev
, vol.18
, pp. 381-386
-
-
Yin, V.P.1
Poss, K.D.2
-
75
-
-
0141785177
-
Cell differentiation and cell fate during urodele tail and limb regeneration
-
Tanaka EM. Cell differentiation and cell fate during urodele tail and limb regeneration. Curr Opin Genet Dev. 2003; 13: 497-501.
-
(2003)
Curr Opin Genet Dev
, vol.13
, pp. 497-501
-
-
Tanaka, E.M.1
-
76
-
-
34249913942
-
Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine
-
Stoick-Cooper CL, Moon RT, Weidinger G. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev. 2007; 21: 1292-315.
-
(2007)
Genes Dev
, vol.21
, pp. 1292-1315
-
-
Stoick-Cooper, C.L.1
Moon, R.T.2
Weidinger, G.3
-
78
-
-
0033614967
-
PAX3 and PAX7 exhibit conserved cis-acting transcription repression domains and utilize a common gain of function mechanism in alveolar rhabdomyosarcoma
-
Bennicelli JL, Advani S, Schäfer BW, et al. PAX3 and PAX7 exhibit conserved cis-acting transcription repression domains and utilize a common gain of function mechanism in alveolar rhabdomyosarcoma. Oncogene. 1999; 18: 4348-56.
-
(1999)
Oncogene
, vol.18
, pp. 4348-4356
-
-
Bennicelli, J.L.1
Advani, S.2
Schäfer, B.W.3
-
79
-
-
0031681282
-
Degradation of myogenic transcription factor MyoD by the ubiquitin pathway in vivo and in vitro: regulation by specific DNA binding
-
Abu Hatoum O, Gross-Mesilaty S, Breitschopf K, et al. Degradation of myogenic transcription factor MyoD by the ubiquitin pathway in vivo and in vitro: regulation by specific DNA binding. Mol Cell Biol. 1998; 18: 5670-7.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 5670-5677
-
-
Abu Hatoum, O.1
Gross-Mesilaty, S.2
Breitschopf, K.3
-
80
-
-
0034737605
-
The COOH-terminal transactivation domain plays a key role in regulating the in vitro and in vivo function of Pax3 homeodomain
-
Cao Y, Wang C. The COOH-terminal transactivation domain plays a key role in regulating the in vitro and in vivo function of Pax3 homeodomain. J Biol Chem. 2000; 275: 9854-62.
-
(2000)
J Biol Chem
, vol.275
, pp. 9854-9862
-
-
Cao, Y.1
Wang, C.2
-
81
-
-
0033168203
-
The Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx
-
Hollenbach AD, Sublett JE, McPherson CJ, et al. The Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx. EMBO J. 1999; 18: 3702-11.
-
(1999)
EMBO J
, vol.18
, pp. 3702-3711
-
-
Hollenbach, A.D.1
Sublett, J.E.2
McPherson, C.J.3
-
82
-
-
0035937415
-
Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube
-
Muhr J, Andersson E, Persson M, et al. Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. Cell. 2001; 104: 861-73.
-
(2001)
Cell
, vol.104
, pp. 861-873
-
-
Muhr, J.1
Andersson, E.2
Persson, M.3
-
83
-
-
0343183096
-
Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family
-
Eberhard D, Jiménez G, Heavey B, et al. Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J. 2000; 19: 2292-303.
-
(2000)
EMBO J
, vol.19
, pp. 2292-2303
-
-
Eberhard, D.1
Jiménez, G.2
Heavey, B.3
-
84
-
-
0142137133
-
Groucho suppresses Pax2 transactivation by inhibition of JNK-mediated phosphorylation
-
Cai Y, Brophy PD, Levitan I, et al. Groucho suppresses Pax2 transactivation by inhibition of JNK-mediated phosphorylation. EMBO J. 2003; 22: 5522-9.
-
(2003)
EMBO J
, vol.22
, pp. 5522-5529
-
-
Cai, Y.1
Brophy, P.D.2
Levitan, I.3
-
85
-
-
0035338502
-
-
Dissociation of Pax-5 from KI and KII sites during kappa-chain gene rearrangement correlates with its association with the underphosphorylated form of retinoblastoma.
-
Sato H, Wang D, Kudo A. Dissociation of Pax-5 from KI and KII sites during kappa-chain gene rearrangement correlates with its association with the underphosphorylated form of retinoblastoma. J Immunol. 2001; 166: 6704-10.
-
(2001)
J Immunol
, vol.166
, pp. 6704-6710
-
-
Sato, H.1
Wang, D.2
Kudo, A.3
-
86
-
-
1242292284
-
WBP-2, a WW domain binding protein, interacts with the thyroid-specific transcription factor Pax8
-
Nitsch R, Di Palma T, Mascia A, et al. WBP-2, a WW domain binding protein, interacts with the thyroid-specific transcription factor Pax8. Biochem J. 2004; 377: 553-60.
-
(2004)
Biochem J
, vol.377
, pp. 553-560
-
-
Nitsch, R.1
Di Palma, T.2
Mascia, A.3
-
87
-
-
41349083127
-
Genome-wide discovery of Pax7 target genes during development
-
White RB, Ziman MR. Genome-wide discovery of Pax7 target genes during development. Physiol Genomics. 2008; 33: 41-9.
-
(2008)
Physiol Genomics
, vol.33
, pp. 41-49
-
-
White, R.B.1
Ziman, M.R.2
-
88
-
-
0037059748
-
Phosphorylation of Pax2 by the c-Jun N-terminal kinase and enhanced Pax2-dependent transcription activation
-
Cai Y, Lechner MS, Nihalani D, et al. Phosphorylation of Pax2 by the c-Jun N-terminal kinase and enhanced Pax2-dependent transcription activation. J Biol Chem. 2002; 277: 1217-22.
-
(2002)
J Biol Chem
, vol.277
, pp. 1217-1222
-
-
Cai, Y.1
Lechner, M.S.2
Nihalani, D.3
-
89
-
-
78650462563
-
Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development
-
Yan Q, Gong L, Deng M, et al. Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development. Proc Natl Acad Sci USA. 2010; 107: 21034-9.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 21034-21039
-
-
Yan, Q.1
Gong, L.2
Deng, M.3
-
90
-
-
34447523329
-
Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors
-
Boutet SC, Disatnik MH, Chan LS, et al. Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell. 2007; 130: 349-62.
-
(2007)
Cell
, vol.130
, pp. 349-362
-
-
Boutet, S.C.1
Disatnik, M.H.2
Chan, L.S.3
-
91
-
-
78649974534
-
Taf1 regulates Pax3 protein by monoubiquitination in skeletal muscle progenitors
-
Boutet SC, Biressi S, Iori K, et al. Taf1 regulates Pax3 protein by monoubiquitination in skeletal muscle progenitors. Mol Cell. 2010; 40: 749-61.
-
(2010)
Mol Cell
, vol.40
, pp. 749-761
-
-
Boutet, S.C.1
Biressi, S.2
Iori, K.3
-
92
-
-
21844456289
-
Glutathionylation of two cysteine residues in paired domain regulates DNA binding activity of Pax-8
-
Cao X, Kambe F, Lu X, et al. Glutathionylation of two cysteine residues in paired domain regulates DNA binding activity of Pax-8. J Biol Chem. 2005; 280: 25901-6.
-
(2005)
J Biol Chem
, vol.280
, pp. 25901-25906
-
-
Cao, X.1
Kambe, F.2
Lu, X.3
-
94
-
-
77956370863
-
microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7
-
Chen JF, Tao Y, Li J, et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol. 2010; 190: 867-79.
-
(2010)
J Cell Biol
, vol.190
, pp. 867-879
-
-
Chen, J.F.1
Tao, Y.2
Li, J.3
-
95
-
-
78751689243
-
miR-206 and -486 induce myoblast differentiation by downregulating Pax7
-
Dey BK, Gagan J, Dutta A. miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol. 2011; 31: 203-14.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 203-214
-
-
Dey, B.K.1
Gagan, J.2
Dutta, A.3
-
96
-
-
33750460897
-
Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex
-
Lin DI, Barbash O, Kumar KG, et al. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol Cell. 2006; 24: 355-66.
-
(2006)
Mol Cell
, vol.24
, pp. 355-366
-
-
Lin, D.I.1
Barbash, O.2
Kumar, K.G.3
-
97
-
-
33645822309
-
The ETS protein MEF is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCFSkp2
-
Liu Y, Hedvat CV, Mao S, et al. The ETS protein MEF is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCFSkp2. Mol Cell Biol. 2006; 26: 3114-23.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 3114-3123
-
-
Liu, Y.1
Hedvat, C.V.2
Mao, S.3
-
98
-
-
33845993972
-
Phosphorylation-dependent degradation of transgenic CREB protein initiated by heterodimerization
-
Mouravlev A, Young D, During MJ. Phosphorylation-dependent degradation of transgenic CREB protein initiated by heterodimerization. Brain Res. 2007; 1130: 31-7.
-
(2007)
Brain Res
, vol.1130
, pp. 31-37
-
-
Mouravlev, A.1
Young, D.2
During, M.J.3
-
99
-
-
15044342095
-
Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells
-
Poizat C, Puri PL, Bai Y, et al. Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells. Mol Cell Biol. 2005; 25: 2673-87.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 2673-2687
-
-
Poizat, C.1
Puri, P.L.2
Bai, Y.3
-
100
-
-
41849083427
-
Phosphorylation mediates Sp1 coupled activities of proteolytic processing, desumoylation and degradation
-
Spengler ML, Guo LW, Brattain MG. Phosphorylation mediates Sp1 coupled activities of proteolytic processing, desumoylation and degradation. Cell Cycle. 2008; 7: 623-30.
-
(2008)
Cell Cycle
, vol.7
, pp. 623-630
-
-
Spengler, M.L.1
Guo, L.W.2
Brattain, M.G.3
-
101
-
-
65549106478
-
A role for protein phosphorylation in cytochrome P450 3A4 ubiquitin-dependent proteasomal degradation
-
Wang Y, Liao M, Hoe N, et al. A role for protein phosphorylation in cytochrome P450 3A4 ubiquitin-dependent proteasomal degradation. J Biol Chem. 2009; 284: 5671-84.
-
(2009)
J Biol Chem
, vol.284
, pp. 5671-5684
-
-
Wang, Y.1
Liao, M.2
Hoe, N.3
-
102
-
-
34247264995
-
Muscle satellite cells and endothelial cells: close neighbors and privileged partners
-
Christov C, Chrétien F, Abou-Khalil R, et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell. 2007; 18: 1397-409.
-
(2007)
Mol Biol Cell
, vol.18
, pp. 1397-1409
-
-
Christov, C.1
Chrétien, F.2
Abou-Khalil, R.3
-
103
-
-
75949096894
-
Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis
-
Joe AW, Yi L, Natarajan A, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol. 2010; 12: 153-63.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 153-163
-
-
Joe, A.W.1
Yi, L.2
Natarajan, A.3
-
104
-
-
34248997759
-
Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
-
Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007; 204: 1057-69.
-
(2007)
J Exp Med
, vol.204
, pp. 1057-1069
-
-
Arnold, L.1
Henry, A.2
Poron, F.3
-
105
-
-
77954210220
-
An updated overview on Wnt signaling pathways: a prelude for more
-
Rao TP, Kühl M. An updated overview on Wnt signaling pathways: a prelude for more. Circ Res. 2010; 106: 1798-806.
-
(2010)
Circ Res
, vol.106
, pp. 1798-1806
-
-
Rao, T.P.1
Kühl, M.2
-
106
-
-
67650230896
-
Wnt/beta-catenin signaling: components, mechanisms, and diseases
-
MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009; 17: 9-26.
-
(2009)
Dev Cell
, vol.17
, pp. 9-26
-
-
MacDonald, B.T.1
Tamai, K.2
He, X.3
-
107
-
-
45849117967
-
Wnt signal transduction pathways
-
Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008; 4: 68-75.
-
(2008)
Organogenesis
, vol.4
, pp. 68-75
-
-
Komiya, Y.1
Habas, R.2
-
108
-
-
0038723240
-
Emerging parallels in the generation and regeneration of skeletal muscle
-
Snider L, Tapscott SJ. Emerging parallels in the generation and regeneration of skeletal muscle. Cell. 2003; 113: 811-12.
-
(2003)
Cell
, vol.113
, pp. 811-812
-
-
Snider, L.1
Tapscott, S.J.2
-
109
-
-
35348992642
-
Involvement of Wnt4 signaling during myogenic proliferation and differentiation of skeletal muscle
-
Takata H, Terada K, Oka H, et al. Involvement of Wnt4 signaling during myogenic proliferation and differentiation of skeletal muscle. Dev Dyn. 2007; 236: 2800-7.
-
(2007)
Dev Dyn
, vol.236
, pp. 2800-2807
-
-
Takata, H.1
Terada, K.2
Oka, H.3
-
110
-
-
79953200121
-
A WNT/{beta}-catenin signaling activator, R-spondin, plays positive regulatory roles during skeletal myogenesis
-
Han XH, Jin YR, Seto M, et al. A WNT/{beta}-catenin signaling activator, R-spondin, plays positive regulatory roles during skeletal myogenesis. J Biol Chem. 2011; 286: 10649-59.
-
(2011)
J Biol Chem
, vol.286
, pp. 10649-10659
-
-
Han, X.H.1
Jin, Y.R.2
Seto, M.3
-
111
-
-
42349104519
-
Beta-catenin interacts with MyoD and regulates its transcription activity
-
Kim CH, Neiswender H, Baik EJ, et al. Beta-catenin interacts with MyoD and regulates its transcription activity. Mol Cell Biol. 2008; 28: 2941-51.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 2941-2951
-
-
Kim, C.H.1
Neiswender, H.2
Baik, E.J.3
-
113
-
-
35648981937
-
Wnt3a signaling promotes proliferation, myogenic differentiation, and migration of rat bone marrow mesenchymal stem cells
-
Shang YC, Wang SH, Xiong F, et al. Wnt3a signaling promotes proliferation, myogenic differentiation, and migration of rat bone marrow mesenchymal stem cells. Acta Pharmacol Sin. 2007; 28: 1761-74.
-
(2007)
Acta Pharmacol Sin
, vol.28
, pp. 1761-1774
-
-
Shang, Y.C.1
Wang, S.H.2
Xiong, F.3
-
114
-
-
46649089157
-
Beta-Catenin promotes self-renewal of skeletal-muscle satellite cells
-
Perez-Ruiz A, Ono Y, Gnocchi VF, et al. Beta-Catenin promotes self-renewal of skeletal-muscle satellite cells. J Cell Sci. 2008; 121: 1373-82.
-
(2008)
J Cell Sci
, vol.121
, pp. 1373-1382
-
-
Perez-Ruiz, A.1
Ono, Y.2
Gnocchi, V.F.3
-
115
-
-
66049092616
-
Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells
-
Le Grand F, Jones AE, Seale V, et al. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell. 2009; 4: 535-47.
-
(2009)
Cell Stem Cell
, vol.4
, pp. 535-547
-
-
Le Grand, F.1
Jones, A.E.2
Seale, V.3
-
116
-
-
0033617522
-
Notch signaling: cell fate control and signal integration in development
-
Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999; 284: 770-6.
-
(1999)
Science
, vol.284
, pp. 770-776
-
-
Artavanis-Tsakonas, S.1
Rand, M.D.2
Lake, R.J.3
-
117
-
-
33750566665
-
Notch signaling in stem cell systems
-
Chiba S. Notch signaling in stem cell systems. Stem Cells. 2006; 24: 2437-47.
-
(2006)
Stem Cells
, vol.24
, pp. 2437-2447
-
-
Chiba, S.1
-
118
-
-
0027991383
-
The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD
-
Kopan R, Nye JS, Weintraub H. The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development. 1994; 120: 2385-96.
-
(1994)
Development
, vol.120
, pp. 2385-2396
-
-
Kopan, R.1
Nye, J.S.2
Weintraub, H.3
-
119
-
-
34248364852
-
RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells
-
Vasyutina E, Lenhard DC, Wende H, et al. RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells. Proc Natl Acad Sci USA. 2007; 104: 4443-8.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 4443-4448
-
-
Vasyutina, E.1
Lenhard, D.C.2
Wende, H.3
-
120
-
-
33846330114
-
Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants
-
Schuster-Gossler K, Cordes R, Gossler A. Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants. Proc Natl Acad Sci USA. 2007; 104: 537-42.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 537-542
-
-
Schuster-Gossler, K.1
Cordes, R.2
Gossler, A.3
-
121
-
-
59549090181
-
The role of Delta-like 1 shedding in muscle cell self-renewal and differentiation
-
Sun D, Li H, Zolkiewska A. The role of Delta-like 1 shedding in muscle cell self-renewal and differentiation. J Cell Sci. 2008; 121: 3815-23.
-
(2008)
J Cell Sci
, vol.121
, pp. 3815-3823
-
-
Sun, D.1
Li, H.2
Zolkiewska, A.3
-
122
-
-
0036744815
-
The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis
-
Conboy IM, Rando TA. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell. 2002; 3: 397-409.
-
(2002)
Dev Cell
, vol.3
, pp. 397-409
-
-
Conboy, I.M.1
Rando, T.A.2
-
123
-
-
33746541115
-
Inhibition of Notch signaling induces myotube hypertrophy by recruiting a subpopulation of reserve cells
-
Kitzmann M, Bonnieu A, Duret C, et al. Inhibition of Notch signaling induces myotube hypertrophy by recruiting a subpopulation of reserve cells. J Cell Physiol. 2006; 208: 538-48.
-
(2006)
J Cell Physiol
, vol.208
, pp. 538-548
-
-
Kitzmann, M.1
Bonnieu, A.2
Duret, C.3
-
124
-
-
79251603892
-
Role of endogenous TGF-β family in myogenic differentiation of C2C12 cells
-
Furutani Y, Umemoto T, Murakami M, et al. Role of endogenous TGF-β family in myogenic differentiation of C2C12 cells. J Cell Biochem. 2011; 112: 614-24.
-
(2011)
J Cell Biochem
, vol.112
, pp. 614-624
-
-
Furutani, Y.1
Umemoto, T.2
Murakami, M.3
-
125
-
-
47949097215
-
Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells
-
Carlson ME, Hsu M, Conboy IM. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature. 2008; 454: 528-32.
-
(2008)
Nature
, vol.454
, pp. 528-532
-
-
Carlson, M.E.1
Hsu, M.2
Conboy, I.M.3
-
126
-
-
77955050318
-
TGF-beta receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation
-
Droguett R, Cabello-Verrugio C, Santander C, et al. TGF-beta receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation. Exp Cell Res. 2010; 316: 2487-503.
-
(2010)
Exp Cell Res
, vol.316
, pp. 2487-2503
-
-
Droguett, R.1
Cabello-Verrugio, C.2
Santander, C.3
-
127
-
-
77149149961
-
BMP regulation of myogenesis in zebrafish
-
Patterson SE, Bird NC, Devoto SH. BMP regulation of myogenesis in zebrafish. Dev Dyn. 2010; 239: 806-17.
-
(2010)
Dev Dyn
, vol.239
, pp. 806-817
-
-
Patterson, S.E.1
Bird, N.C.2
Devoto, S.H.3
-
128
-
-
33644893041
-
Myostatin imposes reversible quiescence on embryonic muscle precursors
-
Amthor H, Otto A, Macharia R, et al. Myostatin imposes reversible quiescence on embryonic muscle precursors. Dev Dyn. 2006; 235: 672-80.
-
(2006)
Dev Dyn
, vol.235
, pp. 672-680
-
-
Amthor, H.1
Otto, A.2
Macharia, R.3
-
129
-
-
34547092153
-
Antagonism of myostatin enhances muscle regeneration during sarcopenia
-
Siriett V, Salerno MS, Berry C, et al. Antagonism of myostatin enhances muscle regeneration during sarcopenia. Mol Ther. 2007; 15: 1463-70.
-
(2007)
Mol Ther
, vol.15
, pp. 1463-1470
-
-
Siriett, V.1
Salerno, M.S.2
Berry, C.3
-
130
-
-
79951566059
-
Enhanced hyperplasia in muscles of transgenic zebrafish expressing Follistatin1
-
Li X, Nie F, Yin Z, et al. Enhanced hyperplasia in muscles of transgenic zebrafish expressing Follistatin1. Sci China Life Sci. 2011; 54: 159-65.
-
(2011)
Sci China Life Sci
, vol.54
, pp. 159-165
-
-
Li, X.1
Nie, F.2
Yin, Z.3
-
131
-
-
2342627231
-
Deacetylase inhibitors increase muscle cell size by promoting myoblast recruitment and fusion through induction of follistatin
-
Iezzi S, Di Padova M, Serra C, et al. Deacetylase inhibitors increase muscle cell size by promoting myoblast recruitment and fusion through induction of follistatin. Dev Cell. 2004; 6: 673-84.
-
(2004)
Dev Cell
, vol.6
, pp. 673-684
-
-
Iezzi, S.1
Di Padova, M.2
Serra, C.3
-
132
-
-
30944467753
-
Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion
-
Pisconti A, Brunelli S, Di Padova M, et al. Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion. J Cell Biol. 2006; 172: 233-44.
-
(2006)
J Cell Biol
, vol.172
, pp. 233-244
-
-
Pisconti, A.1
Brunelli, S.2
Di Padova, M.3
-
133
-
-
0024315692
-
Fibroblast growth factor and transforming growth factor fl repress transcription of the myogenic regulatory gene MyoD1
-
Vaidya TB, Rhodes SJ, Taparowski EJ, et al. Fibroblast growth factor and transforming growth factor fl repress transcription of the myogenic regulatory gene MyoD1. Mol Cell Biol. 1989; 9: 3576-9.
-
(1989)
Mol Cell Biol
, vol.9
, pp. 3576-3579
-
-
Vaidya, T.B.1
Rhodes, S.J.2
Taparowski, E.J.3
-
134
-
-
0026725670
-
Repression of myogenin function by TGF-beta 1 is targeted at the basic helix-loop-helix motif and is independent of E2A products
-
Martin JF, Li L, Olson EN. Repression of myogenin function by TGF-beta 1 is targeted at the basic helix-loop-helix motif and is independent of E2A products. J Biol Chem. 1992; 267: 10956-60.
-
(1992)
J Biol Chem
, vol.267
, pp. 10956-10960
-
-
Martin, J.F.1
Li, L.2
Olson, E.N.3
-
135
-
-
68849090695
-
Transforming growth factor-beta1-induced satellite cell apoptosis in chickens is associated with beta1 integrin-mediated focal adhesion kinase activation
-
Li X, McFarland DC, Velleman SG. Transforming growth factor-beta1-induced satellite cell apoptosis in chickens is associated with beta1 integrin-mediated focal adhesion kinase activation. Poult Sci. 2009; 88: 1725-34.
-
(2009)
Poult Sci
, vol.88
, pp. 1725-1734
-
-
Li, X.1
McFarland, D.C.2
Velleman, S.G.3
-
136
-
-
33745830812
-
Transforming growth factor beta (TGF-beta) signaling is regulated by electrical activity in skeletal muscle cells. TGF-beta type I receptor is transcriptionally regulated by myotube excitability
-
Ugarte G, Brandan E. Transforming growth factor beta (TGF-beta) signaling is regulated by electrical activity in skeletal muscle cells. TGF-beta type I receptor is transcriptionally regulated by myotube excitability. J Biol Chem. 2006; 281: 18473-81.
-
(2006)
J Biol Chem
, vol.281
, pp. 18473-18481
-
-
Ugarte, G.1
Brandan, E.2
-
137
-
-
33747015300
-
Extracellular proteoglycans modify TGF-beta bio-availability attenuating its signaling during skeletal muscle differentiation
-
Droguett R, Cabello-Verrugio C, Riquelme C, et al. Extracellular proteoglycans modify TGF-beta bio-availability attenuating its signaling during skeletal muscle differentiation. Matrix Biol. 2006; 25: 332-41.
-
(2006)
Matrix Biol
, vol.25
, pp. 332-341
-
-
Droguett, R.1
Cabello-Verrugio, C.2
Riquelme, C.3
-
138
-
-
2342515391
-
Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis
-
Amthor H, Nicholas G, McKinnell I, et al. Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev Biol. 2004; 270: 19-30.
-
(2004)
Dev Biol
, vol.270
, pp. 19-30
-
-
Amthor, H.1
Nicholas, G.2
McKinnell, I.3
-
139
-
-
77957353583
-
Regulation of muscle mass by follistatin and activins
-
Lee SJ, Lee YS, Zimmers TA, et al. Regulation of muscle mass by follistatin and activins. Mol Endocrinol. 2010; 24: 1998-2008.
-
(2010)
Mol Endocrinol
, vol.24
, pp. 1998-2008
-
-
Lee, S.J.1
Lee, Y.S.2
Zimmers, T.A.3
-
140
-
-
16244380777
-
Syndecans: new kids on the signaling block
-
Tkachenko E, Rhodes JM, Simons M. Syndecans: new kids on the signaling block. Circ Res. 2005; 96: 488-500.
-
(2005)
Circ Res
, vol.96
, pp. 488-500
-
-
Tkachenko, E.1
Rhodes, J.M.2
Simons, M.3
-
141
-
-
0345169052
-
-
Syndecans: proteoglycan regulators of cell-surface microdomains?
-
Couchman JR Syndecans: proteoglycan regulators of cell-surface microdomains? Nat Rev Mol Cell Biol. 2003; 4: 926-37.
-
(2003)
Nat Rev Mol Cell Biol
, vol.4
, pp. 926-937
-
-
Couchman, J.R.1
-
142
-
-
0034729437
-
Syndecan-regulated receptor signaling
-
Rapraeger AC. Syndecan-regulated receptor signaling. J Cell Biol. 2000; 149: 995-8.
-
(2000)
J Cell Biol
, vol.149
, pp. 995-998
-
-
Rapraeger, A.C.1
-
143
-
-
4444240885
-
Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration
-
Cornelison DD, Wilcox-Adelman SA, Goetinck PF, et al. Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev. 2004; 18: 2231-6.
-
(2004)
Genes Dev
, vol.18
, pp. 2231-2236
-
-
Cornelison, D.D.1
Wilcox-Adelman, S.A.2
Goetinck, P.F.3
-
144
-
-
77955453494
-
Syndecan-3 and Notch cooperate in regulating adult myogenesis
-
Pisconti A, Cornelison DD, Olguín HC, et al. Syndecan-3 and Notch cooperate in regulating adult myogenesis. J Cell Biol. 2010; 190: 427-41.
-
(2010)
J Cell Biol
, vol.190
, pp. 427-441
-
-
Pisconti, A.1
Cornelison, D.D.2
Olguín, H.C.3
-
145
-
-
0347287089
-
Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of Syndecan-3 for successful fiber formation
-
Casar JC, Cabello-Verrugio C, Olguin H, et al. Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of Syndecan-3 for successful fiber formation. J Cell Sci. 2004; 117: 73-84.
-
(2004)
J Cell Sci
, vol.117
, pp. 73-84
-
-
Casar, J.C.1
Cabello-Verrugio, C.2
Olguin, H.3
-
146
-
-
0035203194
-
ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion
-
Jones NC, Fedorov YV, Rosenthal RS, et al. ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol. 2001; 186: 104-15.
-
(2001)
J Cell Physiol
, vol.186
, pp. 104-115
-
-
Jones, N.C.1
Fedorov, Y.V.2
Rosenthal, R.S.3
-
147
-
-
0033621470
-
Antisense inhibition of Syndecan-3 expression during skeletal muscle differentiation accelerates myogenesis through a basic fibroblast growth factor-dependent mechanism
-
Fuentealba L, Carey DJ, Brandan E. Antisense inhibition of Syndecan-3 expression during skeletal muscle differentiation accelerates myogenesis through a basic fibroblast growth factor-dependent mechanism. J Biol Chem. 1999; 274: 37876-84.
-
(1999)
J Biol Chem
, vol.274
, pp. 37876-37884
-
-
Fuentealba, L.1
Carey, D.J.2
Brandan, E.3
-
148
-
-
0023051832
-
Identification of the fibroblast growth factor receptor of Swiss 3T3 cells and mouse skeletal muscle myoblasts
-
Olwin BB, Hauschka SD. Identification of the fibroblast growth factor receptor of Swiss 3T3 cells and mouse skeletal muscle myoblasts. Biochemistry. 1986; 25: 3487-92.
-
(1986)
Biochemistry
, vol.25
, pp. 3487-3492
-
-
Olwin, B.B.1
Hauschka, S.D.2
-
149
-
-
77957939315
-
TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in Duchenne muscular dystrophy
-
e12479.
-
Acharyya S, Sharma SM, Cheng AS, et al. TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in Duchenne muscular dystrophy. PLoS One. 2010; 5: e12479.
-
(2010)
PLoS One
, vol.5
-
-
Acharyya, S.1
Sharma, S.M.2
Cheng, A.S.3
-
150
-
-
33749442351
-
TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents
-
Valerio A, Cardile A, Cozzi V, et al. TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest. 2006; 116: 2791-8.
-
(2006)
J Clin Invest
, vol.116
, pp. 2791-2798
-
-
Valerio, A.1
Cardile, A.2
Cozzi, V.3
-
151
-
-
0042242879
-
TNF-alpha is a mitogen in skeletal muscle
-
C370-6.
-
Li YP. TNF-alpha is a mitogen in skeletal muscle. Am J Physiol Cell Physiol. 2003; 285: C370-6.
-
(2003)
Am J Physiol Cell Physiol.
, vol.285
-
-
Li, Y.P.1
-
152
-
-
79551525429
-
Selective control of Pax7 expression by TNF-activated p38α/polycomb repressive complex 2 (PRC2) signaling during muscle satellite cell differentiation
-
Mozzetta C, Consalvi S, Saccone V, et al. Selective control of Pax7 expression by TNF-activated p38α/polycomb repressive complex 2 (PRC2) signaling during muscle satellite cell differentiation. Cell Cycle. 2011; 10: 191-8.
-
(2011)
Cell Cycle
, vol.10
, pp. 191-198
-
-
Mozzetta, C.1
Consalvi, S.2
Saccone, V.3
-
153
-
-
77957357566
-
TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration
-
Palacios D, Mozzetta C, Consalvi S, et al. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell. 2010; 7: 455-69.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 455-469
-
-
Palacios, D.1
Mozzetta, C.2
Consalvi, S.3
-
154
-
-
17644404437
-
The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell
-
Jones NC, Tyner KJ, Nibarger L, et al. The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol. 2005; 169: 105-16.
-
(2005)
J Cell Biol
, vol.169
, pp. 105-116
-
-
Jones, N.C.1
Tyner, K.J.2
Nibarger, L.3
-
155
-
-
0033814140
-
Molecular basis of muscular dystrophies
-
Cohn RD, Campbell KP. Molecular basis of muscular dystrophies. Muscle Nerve. 2000; 23: 1456-71.
-
(2000)
Muscle Nerve
, vol.23
, pp. 1456-1471
-
-
Cohn, R.D.1
Campbell, K.P.2
-
156
-
-
0037160782
-
The muscular dystrophies
-
Emery AEThe muscular dystrophies. Lancet. 2002; 359: 687-95.
-
(2002)
Lancet
, vol.359
, pp. 687-695
-
-
Emery, A.E.1
-
157
-
-
79951987952
-
Molecular mechanisms and treatment options for muscle wasting diseases
-
Rüegg MA, Glass DJ. Molecular mechanisms and treatment options for muscle wasting diseases. Annu Rev Pharmacol Toxicol. 2011; 51: 373-95.
-
(2011)
Annu Rev Pharmacol Toxicol
, vol.51
, pp. 373-395
-
-
Rüegg, M.A.1
Glass, D.J.2
-
158
-
-
33746228333
-
Anabolic potential and regulation of the skeletal muscle satellite cell populations
-
Scimè A, Rudnicki MA. Anabolic potential and regulation of the skeletal muscle satellite cell populations. Curr Opin Clin Nutr Metab Care. 2006; 9: 214-19.
-
(2006)
Curr Opin Clin Nutr Metab Care
, vol.9
, pp. 214-219
-
-
Scimè, A.1
Rudnicki, M.A.2
-
159
-
-
78650432352
-
Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice
-
Sacco A, Mourkioti F, Tran R, et al. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell. 2010; 143: 1059-71.
-
(2010)
Cell
, vol.143
, pp. 1059-1071
-
-
Sacco, A.1
Mourkioti, F.2
Tran, R.3
-
160
-
-
0033958440
-
Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children
-
Decary S, Hamida CB, Mouly V, et al. Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul Disord. 2000; 10: 113-20.
-
(2000)
Neuromuscul Disord
, vol.10
, pp. 113-120
-
-
Decary, S.1
Hamida, C.B.2
Mouly, V.3
-
161
-
-
0030881301
-
Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy
-
Decary S, Mouly V, Hamida CB, et al. Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum Gene Ther. 1997; 8: 1429-38.
-
(1997)
Hum Gene Ther
, vol.8
, pp. 1429-1438
-
-
Decary, S.1
Mouly, V.2
Hamida, C.B.3
-
162
-
-
0033917878
-
Myogenic stem cells for the therapy of primary myopathies: wishful thinking or therapeutic perspective
-
Cossu G, Mavilio F. Myogenic stem cells for the therapy of primary myopathies: wishful thinking or therapeutic perspective? J Clin Invest. 2000; 105: 1669-74.
-
(2000)
J Clin Invest
, vol.105
, pp. 1669-1674
-
-
Cossu, G.1
Mavilio, F.2
-
163
-
-
0042011472
-
Novel therapies for Duchenne muscular dystrophy
-
Kapsa R, Kornberg AJ, Byrne E. Novel therapies for Duchenne muscular dystrophy. Lancet Neurol. 2003; 2: 299-310.
-
(2003)
Lancet Neurol
, vol.2
, pp. 299-310
-
-
Kapsa, R.1
Kornberg, A.J.2
Byrne, E.3
-
164
-
-
36749020558
-
Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle
-
Asakura A, Hirai H, Kablar B, et al. Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle. Proc Natl Acad Sci USA. 2007; 104: 16552-7.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 16552-16557
-
-
Asakura, A.1
Hirai, H.2
Kablar, B.3
|