-
1
-
-
33744900877
-
Artificial neural network based generalized storage-yield-reliability models using the Levenberg-Marquardt algorithm
-
JHYDA7, 0022-1694, 10.1016/j.jhydrol.2005.10.033.
-
Adeloye A.J. De Munari A. Artificial neural network based generalized storage-yield-reliability models using the Levenberg-Marquardt algorithm. J. Hydrol. 2006, 362(1-4):215-230. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2005.10.033.
-
(2006)
J. Hydrol.
, vol.362
, Issue.1-4
, pp. 215-230
-
-
Adeloye, A.J.1
De Munari, A.2
-
2
-
-
77949266538
-
A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks
-
NRCGEO, 0925-2312, 10.1016/j.neucom.2009.11.007.
-
Almeida L.M. Ludermir T.B. multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks. Neurocomputing 2010, 73(7-9):1438-1450. NRCGEO, 0925-2312, 10.1016/j.neucom.2009.11.007.
-
(2010)
Neurocomputing
, vol.73
, Issue.7-9
, pp. 1438-1450
-
-
Almeida, L.M.1
Ludermir, T.B.2
-
3
-
-
33947572974
-
A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
-
JHYDA7, 0022-1694, 10.1016/j.jhydrol.2007.01.013.
-
Aqil M. Kita I. Yano A. Nishiyama S. comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J. Hydrol. 2007, 337(1-2):22-34. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2007.01.013.
-
(2007)
J. Hydrol.
, vol.337
, Issue.1-2
, pp. 22-34
-
-
Aqil, M.1
Kita, I.2
Yano, A.3
Nishiyama, S.4
-
4
-
-
0034174280
-
Artificial neural networks in hydrology. I: preliminary concepts
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, JHYEFF, 1084-0699, org/10.1061/(ASCE)1084-0699(2000)5:2(115)
-
Artificial neural networks in hydrology. I: preliminary concepts. J. Hydrol. Eng. 2000, 5(2):115-123. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, JHYEFF, 1084-0699, org/10.1061/(ASCE)1084-0699(2000)5:2(115)
-
(2000)
J. Hydrol. Eng.
, vol.5
, Issue.2
, pp. 115-123
-
-
-
5
-
-
33847679664
-
Neural network and neuro-fuzzy assessments for scour depth around bridge piers
-
EAAIE6, 0952-1976, 10.1016/j.engappai.2006.06.012.
-
Bateni S.M. Borghei S.M. Jeng D.-S. Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Eng. Appl. Artif. Intell. 2007, 20(3):401-414. EAAIE6, 0952-1976, 10.1016/j.engappai.2006.06.012.
-
(2007)
Eng. Appl. Artif. Intell.
, vol.20
, Issue.3
, pp. 401-414
-
-
Bateni, S.M.1
Borghei, S.M.2
Jeng, D.-S.3
-
6
-
-
0034028703
-
Flood disasters: lessons from the past-worries for the future
-
Graz, Austria.
-
Berz G. Flood disasters: lessons from the past-worries for the future. Proc. Inst. Civ. Eng. Marit. Eng., 142(1) 2000, 3-8. Graz, Austria.
-
(2000)
Proc. Inst. Civ. Eng. Marit. Eng., 142(1)
, pp. 3-8
-
-
Berz, G.1
-
7
-
-
0036221122
-
Optimal division of data for neural networks models in water resources applications
-
WRERAQ, 0043-1397, 10.1029/2001WR000266.
-
Bowden G.J. Maier H.R. Dandy G.C. Optimal division of data for neural networks models in water resources applications. Water Resour. Res. 2002, 38(2):1010-1020. WRERAQ, 0043-1397, 10.1029/2001WR000266.
-
(2002)
Water Resour. Res.
, vol.38
, Issue.2
, pp. 1010-1020
-
-
Bowden, G.J.1
Maier, H.R.2
Dandy, G.C.3
-
8
-
-
1842426595
-
Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling
-
JHYDA7, 0022-1694, 10.1016/j.jhydrol.2003.12.033.
-
Chiang Y.-M. Chang L.-C. Chang F.-J. Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. J. Hydrol. 2004, 290(3-4):297-311. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2003.12.033.
-
(2004)
J. Hydrol.
, vol.290
, Issue.3-4
, pp. 297-311
-
-
Chiang, Y.-M.1
Chang, L.-C.2
Chang, F.-J.3
-
9
-
-
47149115136
-
Initial assessment of bridge backwater using an artifical neural network approach
-
CJCEB8, 0315-1468, 10.1139/L07-142.
-
Cobaner M. Seckin G. Kisi O. Initial assessment of bridge backwater using an artifical neural network approach. Can. J. Civ. Eng. 2008, 35(5):500-510. CJCEB8, 0315-1468, 10.1139/L07-142.
-
(2008)
Can. J. Civ. Eng.
, vol.35
, Issue.5
, pp. 500-510
-
-
Cobaner, M.1
Seckin, G.2
Kisi, O.3
-
10
-
-
0034621379
-
Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
-
JHYDA7, 0022-1694, 10.1016/S0022-1694(00)00214-6.
-
Coulibaly P. Anctil F. Bobée B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 2000, 230(3-4):244-257. JHYDA7, 0022-1694, 10.1016/S0022-1694(00)00214-6.
-
(2000)
J. Hydrol.
, vol.230
, Issue.3-4
, pp. 244-257
-
-
Coulibaly, P.1
Anctil, F.2
Bobée, B.3
-
11
-
-
34250818666
-
Comparison of neural network methods for infilling missing daily weather records
-
JHYDA7, 0022-1694, 10.1016/j.jhydrol.2007.04.020.
-
Coulibaly P. Evora N.D. Comparison of neural network methods for infilling missing daily weather records. J. Hydrol. 2007, 341(1-2):27-41. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2007.04.020.
-
(2007)
J. Hydrol.
, vol.341
, Issue.1-2
, pp. 27-41
-
-
Coulibaly, P.1
Evora, N.D.2
-
12
-
-
0029776836
-
An improved genetic algorithm for pipe network optimization
-
WRERAQ, 0043-1397, 10.1029/95WR02917.
-
Dandy G.C. Simpson A.R. Murphy L.J. An improved genetic algorithm for pipe network optimization. Water Resour. Res. 1996, 32(2):449-458. WRERAQ, 0043-1397, 10.1029/95WR02917.
-
(1996)
Water Resour. Res.
, vol.32
, Issue.2
, pp. 449-458
-
-
Dandy, G.C.1
Simpson, A.R.2
Murphy, L.J.3
-
13
-
-
0034749335
-
Hydrological modeling using artificial neural networks
-
PPGEEC, 0309-1333, org/10.1191/030913301674775671.
-
Dawson C.W. Wilby R.L. Hydrological modeling using artificial neural networks. Prog. Phys. Geog. 2001, 25(1):80-108. PPGEEC, 0309-1333, org/10.1191/030913301674775671.
-
(2001)
Prog. Phys. Geog.
, vol.25
, Issue.1
, pp. 80-108
-
-
Dawson, C.W.1
Wilby, R.L.2
-
14
-
-
47249110634
-
Prediction of groundwater levels from lake levels and climate data using ANN approach
-
WASADV, 0378-4738.
-
Dogan A. Demirpence H. Cobaner M. Prediction of groundwater levels from lake levels and climate data using ANN approach. Water SA 2008, 34(2):199-208. WASADV, 0378-4738.
-
(2008)
Water SA
, vol.34
, Issue.2
, pp. 199-208
-
-
Dogan, A.1
Demirpence, H.2
Cobaner, M.3
-
15
-
-
0242415241
-
Prediction and modeling of the rainfall-runoff transformation of a typical urban basin using ANN and GP
-
AAINEH, 1087-6545, 10.1080/713827142.
-
Dorado J. Rabuñal J. R. Pazos A. Rivero D. Santos A. Puertas J.R. Prediction and modeling of the rainfall-runoff transformation of typical urban basin using ANN and GP. Appl. Artif. Intell. 2003, 17(4):329-343. AAINEH, 1087-6545, 10.1080/713827142.
-
(2003)
Appl. Artif. Intell.
, vol.17
, Issue.4
, pp. 329-343
-
-
Dorado, J.1
Rabuñal, J.R.2
Pazos, A.3
Rivero, D.4
Santos, A.5
Puertas, J.R.6
-
16
-
-
77950516820
-
A hybrid neural network and ARIMA model for water quality time series prediction
-
AAINEH, 1087-6545
-
Faruk D.O. hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 2009, 23(4):586-594. AAINEH, 1087-6545
-
(2009)
Eng. Appl. Artif. Intell.
, vol.23
, Issue.4
, pp. 586-594
-
-
Faruk, D.O.1
-
17
-
-
0032123339
-
Runoff forecasting using RBF networks with OLS algorithm
-
JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(1998)3:3(203).
-
Fernando D.A. K. Jayawardena A.W. Runoff forecasting using RBF networks with OLS algorithm. J. Hydrol. Eng. 1998, 3(3):203-209. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(1998)3:3(203).
-
(1998)
J. Hydrol. Eng.
, vol.3
, Issue.3
, pp. 203-209
-
-
Fernando, D.A.K.1
Jayawardena, A.W.2
-
18
-
-
0029223565
-
Back-propagation neural networks for modelling complex systems
-
AIENEJ, 0954-1810, 10.1016/0954-1810(94)00011-S
-
Goh A.T. C. Back-propagation neural networks for modelling complex systems. Artif. Intell. Eng. 1995, 9(3):143-151. AIENEJ, 0954-1810, 10.1016/0954-1810(94)00011-S
-
(1995)
Artif. Intell. Eng.
, vol.9
, Issue.3
, pp. 143-151
-
-
Goh, A.T.C.1
-
19
-
-
0026152931
-
Hydraulics of flow through a rockfill dam using sediment-free water
-
TAAEAJ, 0001-2351.
-
Herrera N.M. Felton G.K. Hydraulics of flow through rockfill dam using sediment-free water. Trans. 1991, 34(3):871-875. TAAEAJ, 0001-2351.
-
(1991)
Trans.
, vol.34
, Issue.3
, pp. 871-875
-
-
Herrera, N.M.1
Felton, G.K.2
-
20
-
-
84860150534
-
Two dimensional model of flow through and over rockfill dams and its application in flood control
-
Ph.D. thesis, Faculty of Agriculture, Tarbiat Modares Univ., Tehran, Iran.
-
Heydari M. Two dimensional model of flow through and over rockfill dams and its application in flood control. 2007, 193. Ph.D. thesis, Faculty of Agriculture, Tarbiat Modares Univ., Tehran, Iran.
-
(2007)
, pp. 193
-
-
Heydari, M.1
-
21
-
-
0003463297
-
-
Univ. of Michigan Press, Ann Arbor, MI.
-
Holland J.H. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence 1975, Univ. of Michigan Press, Ann Arbor, MI.
-
(1975)
Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence
-
-
Holland, J.H.1
-
22
-
-
20344367734
-
On quantifying agricultural and water management practices from low spatial resolution RS data using genetic algorithms: A numerical study for mixed-pixel environment
-
AWREDI, 0309-1708, 10.1016/j.advwatres.2004.11.015.
-
Ines A.V. M. Honda K. On quantifying agricultural and water management practices from low spatial resolution RS data using genetic algorithms: numerical study for mixed-pixel environment. Adv. Water Resour. 2005, 28(8):856-870. AWREDI, 0309-1708, 10.1016/j.advwatres.2004.11.015.
-
(2005)
Adv. Water Resour.
, vol.28
, Issue.8
, pp. 856-870
-
-
Ines, A.V.M.1
Honda, K.2
-
23
-
-
33644655239
-
An evaluation of artificial neural network technique for the determination of infiltration model parameters
-
1568-4946, 10.1016/j.asoc.2004.12.007.
-
Jain A. Kumar A. An evaluation of artificial neural network technique for the determination of infiltration model parameters. Appl. Soft Comput. 2006, 6(3):272-282. 1568-4946, 10.1016/j.asoc.2004.12.007.
-
(2006)
Appl. Soft Comput.
, vol.6
, Issue.3
, pp. 272-282
-
-
Jain, A.1
Kumar, A.2
-
24
-
-
2442639370
-
Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
-
1568-4946, WRERAQ, 0043-1397.
-
Jain A. Srinivasulu S. Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour. Res. 2004, 40(4):W04302. 1568-4946, WRERAQ, 0043-1397.
-
(2004)
Water Resour. Res.
, vol.40
, Issue.4
-
-
Jain, A.1
Srinivasulu, S.2
-
25
-
-
0034161355
-
Accuracy of neural network approximators in simulation-optimization
-
JWRMD5, 0733-9496, 10.1061/(ASCE)0733-9496(2000)126:2(48).
-
Johnson V.M. Rogers L. Accuracy of neural network approximators in simulation-optimization. J. Water Resour. Plann. Manage. 2000, 126(2):48-56. JWRMD5, 0733-9496, 10.1061/(ASCE)0733-9496(2000)126:2(48).
-
(2000)
J. Water Resour. Plann. Manage.
, vol.126
, Issue.2
, pp. 48-56
-
-
Johnson, V.M.1
Rogers, L.2
-
26
-
-
42049093796
-
Uncertainty reduction of the flood stage forecasting using neural networks model
-
JWRAF5, 1093-474X, 10.1111/j.1752-1688.2007.00144.x
-
Kim S. Kim H.S. Uncertainty reduction of the flood stage forecasting using neural networks model. J. Am. Water Resour. Assoc. 2008, 44(1):148-165. JWRAF5, 1093-474X, 10.1111/j.1752-1688.2007.00144.x
-
(2008)
J. Am. Water Resour. Assoc.
, vol.44
, Issue.1
, pp. 148-165
-
-
Kim, S.1
Kim, H.S.2
-
27
-
-
39849084753
-
Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
-
JHYDA7, 0022-1694, 10.1016/j.jhydrol.2007.12.014
-
Kim S. Kim H.S. Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J. Hydrol. 2008, 351(3-4):299-317. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2007.12.014
-
(2008)
J. Hydrol.
, vol.351
, Issue.3-4
, pp. 299-317
-
-
Kim, S.1
Kim, H.S.2
-
28
-
-
42949174752
-
Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model
-
CGEOEU, 0266-352X, 10.1016/j.compgeo.2007.09.006
-
Kim Y.-S. Kim B.-T. Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model. Comput. Geotech. 2008, 35(3):313-322. CGEOEU, 0266-352X, 10.1016/j.compgeo.2007.09.006
-
(2008)
Comput. Geotech.
, vol.35
, Issue.3
, pp. 313-322
-
-
Kim, Y.-S.1
Kim, B.-T.2
-
29
-
-
56649115883
-
Parameters affecting the fundamental period of RC buildings with infill walls
-
ENSTDF, 0141-0296, 10.1016/j.engstruct.2008.07.017
-
Kose M.M. Parameters affecting the fundamental period of RC buildings with infill walls. Eng. Struct. 2009, 31(1):93-102. ENSTDF, 0141-0296, 10.1016/j.engstruct.2008.07.017
-
(2009)
Eng. Struct.
, vol.31
, Issue.1
, pp. 93-102
-
-
Kose, M.M.1
-
30
-
-
16444365723
-
Rainfall-runoff modeling using artificial neural networks: Comparison of network types
-
HYPRE3, 0885-6087, 10.1002/hyp.5581.
-
Kumar A.R. S. Sudheer K.P. Jain S.K. Agarwal P.K. Rainfall-runoff modeling using artificial neural networks: Comparison of network types. Hydrol. Processes 2005, 19(6):1277-1291. HYPRE3, 0885-6087, 10.1002/hyp.5581.
-
(2005)
Hydrol. Processes
, vol.19
, Issue.6
, pp. 1277-1291
-
-
Kumar, A.R.S.1
Sudheer, K.P.2
Jain, S.K.3
Agarwal, P.K.4
-
31
-
-
0034746067
-
Derivation of Pareto front with genetic algorithm and neural network
-
JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2001)6:1(52).
-
Liong S.-Y. Khu S.-T. Chan W.-T. Derivation of Pareto front with genetic algorithm and neural network. J. Hydrol. Eng. 2001, 6(1):52-61. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2001)6:1(52).
-
(2001)
J. Hydrol. Eng.
, vol.6
, Issue.1
, pp. 52-61
-
-
Liong, S.-Y.1
Khu, S.-T.2
Chan, W.-T.3
-
32
-
-
0029663621
-
The use of artificial neural networks for prediction of water quality parameters
-
WRERAQ, 0043-1397, 10.1029/96WR03529.
-
Maier H.R. Dandy G.C. The use of artificial neural networks for prediction of water quality parameters. Water Resour. Res. 1996, 32(4):1013-1022. WRERAQ, 0043-1397, 10.1029/96WR03529.
-
(1996)
Water Resour. Res.
, vol.32
, Issue.4
, pp. 1013-1022
-
-
Maier, H.R.1
Dandy, G.C.2
-
33
-
-
70350129932
-
Bridge afflux analysis through arched bridge constrictions using artificial intelligence methods
-
1028-6608, 10.1080/10286600802151804.
-
Mamak M. Seckin G. Cobaner M. Kisi O. Bridge afflux analysis through arched bridge constrictions using artificial intelligence methods. Civ. Eng. Environ. Syst. 2009, 26(3):279-293. 1028-6608, 10.1080/10286600802151804.
-
(2009)
Civ. Eng. Environ. Syst.
, vol.26
, Issue.3
, pp. 279-293
-
-
Mamak, M.1
Seckin, G.2
Cobaner, M.3
Kisi, O.4
-
34
-
-
0037306187
-
Variance decomposition-based sensitivity analysis via neural networks
-
RESSEP, 0951-8320, 10.1016/S0951-8320(02)00234-X.
-
Marseguerra M. Masini R. Zio E. Cojazzi G. Variance decomposition-based sensitivity analysis via neural networks. Reliab. Eng. Syst. Saf. 2003, 79(2):229-238. RESSEP, 0951-8320, 10.1016/S0951-8320(02)00234-X.
-
(2003)
Reliab. Eng. Syst. Saf.
, vol.79
, Issue.2
, pp. 229-238
-
-
Marseguerra, M.1
Masini, R.2
Zio, E.3
Cojazzi, G.4
-
35
-
-
67650293317
-
Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed
-
HYPRE3, 0885-6087, 10.1002/hyp.7136.
-
Mutlu E. Chaubey I. Hexmoor H. Bajwa S.G. Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol. Processes 2008, 22(26):5097-5106. HYPRE3, 0885-6087, 10.1002/hyp.7136.
-
(2008)
Hydrol. Processes
, vol.22
, Issue.26
, pp. 5097-5106
-
-
Mutlu, E.1
Chaubey, I.2
Hexmoor, H.3
Bajwa, S.G.4
-
36
-
-
34248343038
-
A numerical modelling and neural network approach to estimate the impact of groundwater abstractions on river flows
-
JHYDA7, 0022-1694, 10.1016/j.jhydrol.2007.01.041.
-
Parkin G. Birkinshaw S.J. Younger P.L. Rao Z. Kirk S. numerical modelling and neural network approach to estimate the impact of groundwater abstractions on river flows. J. Hydrol. 2007, 339(1-2):15-28. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2007.01.041.
-
(2007)
J. Hydrol.
, vol.339
, Issue.1-2
, pp. 15-28
-
-
Parkin, G.1
Birkinshaw, S.J.2
Younger, P.L.3
Rao, Z.4
Kirk, S.5
-
37
-
-
38349082292
-
A coupled model tree-genetic algorithm scheme for flow and water quality predictions in watersheds
-
JHYDA7, 0022-1694, 10.1016/j.jhydrol.2007.11.013.
-
Preis A. Ostfeld A. coupled model tree-genetic algorithm scheme for flow and water quality predictions in watersheds. J. Hydrol. 2008, 349(3-4):364-375. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2007.11.013.
-
(2008)
J. Hydrol.
, vol.349
, Issue.3-4
, pp. 364-375
-
-
Preis, A.1
Ostfeld, A.2
-
38
-
-
71649087374
-
Using artificial neural networks to generate synthetic well logs
-
JNGSA4, 1875-5100, doi.org/10.1016/j.jngse.2009.08.003.
-
Rolon L. Mohaghegh S.D. Ameri S. Gaskari R. McDaniel B. Using artificial neural networks to generate synthetic well logs. J. Nat. Gas Sci. Eng. 2009, 1(4-5):118-133. JNGSA4, 1875-5100, doi.org/10.1016/j.jngse.2009.08.003.
-
(2009)
J. Nat. Gas Sci. Eng.
, vol.1
, Issue.4-5
, pp. 118-133
-
-
Rolon, L.1
Mohaghegh, S.D.2
Ameri, S.3
Gaskari, R.4
McDaniel, B.5
-
39
-
-
0000646059
-
Learning internal representation by error propagation
-
D. E. Rumelhart, J. L. McClellandChapter 8 eds., MIT Press, Cambridge, MA.
-
Rumelhart D.E. Hinton G.E. Williams R.J. Learning internal representation by error propagation. Parallel distributed processing: Explorations in the microstructure of cognition 1986, 1:318-362. D. E. Rumelhart, J. L. McClelland Chapter 8, and eds., Vol. MIT Press, Cambridge, MA.
-
(1986)
Parallel distributed processing: Explorations in the microstructure of cognition
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
40
-
-
71349085742
-
Modelling of time related drying changes on matte coated paper with artificial neural networks
-
ESAPEH, 0957-4174, 10.1016/j.eswa.2009.09.068.
-
Şahïnbaşkan T. Köse E. Modelling of time related drying changes on matte coated paper with artificial neural networks. Expert Syst. Appl. 2010, 37(4):3140-3144. ESAPEH, 0957-4174, 10.1016/j.eswa.2009.09.068.
-
(2010)
Expert Syst. Appl.
, vol.37
, Issue.4
, pp. 3140-3144
-
-
Şahïnbaşkan, T.1
Köse, E.2
-
41
-
-
46149092775
-
Micro genetic algorithms and artificial neural networks to assess minimum data requirements for prediction of pesticide concentrations in shallow groundwater on a regional scale
-
WRERAQ, 0043-1397.
-
Sahoo G.B. Ray C. Micro genetic algorithms and artificial neural networks to assess minimum data requirements for prediction of pesticide concentrations in shallow groundwater on regional scale. Water Resour. Res. 2008, 44:W05414. WRERAQ, 0043-1397.
-
(2008)
Water Resour. Res.
, vol.44
-
-
Sahoo, G.B.1
Ray, C.2
-
42
-
-
33745982644
-
Application of artificial neural networks to assess pesticide contamination in shallow groundwater
-
STENDL, 0048-9697, 10.1016/j.scitotenv.2005.12.011.
-
Sahoo G.B. Ray C. Mehnert E. Keefer D.A. Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Sci. Total Environ. 2006, 367(1):234-251. STENDL, 0048-9697, 10.1016/j.scitotenv.2005.12.011.
-
(2006)
Sci. Total Environ.
, vol.367
, Issue.1
, pp. 234-251
-
-
Sahoo, G.B.1
Ray, C.2
Mehnert, E.3
Keefer, D.A.4
-
43
-
-
84860175297
-
Reservoir Routing through successive rockfill detention dams
-
Samani J.M. V. Heydari M. Reservoir Routing through successive rockfill detention dams. J. Agric. Sci. Technol. 2007, 9(4):317-326
-
(2007)
J. Agric. Sci. Technol.
, vol.9
, Issue.4
, pp. 317-326
-
-
Samani, J.M.V.1
Heydari, M.2
-
44
-
-
60649118396
-
Artificial neural network modeling of the river water quality-A case study
-
ECMODT, 0304-3800, 10.1016/j.ecolmodel.2009.01.004.
-
Singh K.P. Basant A. Malik A. Jain G. Artificial neural network modeling of the river water quality-A case study. Ecol. Modell. 2009, 220(6):888-895. ECMODT, 0304-3800, 10.1016/j.ecolmodel.2009.01.004.
-
(2009)
Ecol. Modell.
, vol.220
, Issue.6
, pp. 888-895
-
-
Singh, K.P.1
Basant, A.2
Malik, A.3
Jain, G.4
-
45
-
-
60449106698
-
Development of artificial neural network model for a coal-fired boiler using real plant data
-
ENGYD4, 0149-9386, 10.1016/j.energy.2008.10.010.
-
Smrekar J. Assadi M. Fast M. Kuštrin I. De S. Development of artificial neural network model for coal-fired boiler using real plant data. Energy 2009, 34(2):144-152. ENGYD4, 0149-9386, 10.1016/j.energy.2008.10.010.
-
(2009)
Energy
, vol.34
, Issue.2
, pp. 144-152
-
-
Smrekar, J.1
Assadi, M.2
Fast, M.3
Kuštrin, I.4
De, S.5
-
46
-
-
33644636765
-
A comparative analysis of training methods for artificial neural network rainfall-runoff models
-
1568-4946, 10.1016/j.asoc.2005.02.002.
-
Srinivasulu S. Jain A. comparative analysis of training methods for artificial neural network rainfall-runoff models. Appl. Soft Comput. 2006, 6(3):295-306. 1568-4946, 10.1016/j.asoc.2005.02.002.
-
(2006)
Appl. Soft Comput.
, vol.6
, Issue.3
, pp. 295-306
-
-
Srinivasulu, S.1
Jain, A.2
-
47
-
-
77952883472
-
Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran
-
10.1007/s00521-009-0320-9
-
Tabari H. Marofi S. Abyaneh H. Z. Sharifi M.R. Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran. Neural Comput. Appl. 2010, 19(4):625-635. 10.1007/s00521-009-0320-9
-
(2010)
Neural Comput. Appl.
, vol.19
, Issue.4
, pp. 625-635
-
-
Tabari, H.1
Marofi, S.2
Abyaneh, H.Z.3
Sharifi, M.R.4
-
48
-
-
77953692036
-
Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression
-
IRSCD2, 0342-7188, org/10.1007/s00271-009-0201-0
-
Tabari H. Marofi S. Sabziparvar A.A. Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig. Sci. 2010, 28(5):399-406. IRSCD2, 0342-7188, org/10.1007/s00271-009-0201-0
-
(2010)
Irrig. Sci.
, vol.28
, Issue.5
, pp. 399-406
-
-
Tabari, H.1
Marofi, S.2
Sabziparvar, A.A.3
-
49
-
-
78650738248
-
Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region
-
MAPHEU, 1436-5065, 10.1007/s00703-010-0110-z.
-
Tabari H. Sabziparvar A.A. Ahmadi M. Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region. Meteorol. Atmos. Phys. 2010, 110(3-4):135-142. MAPHEU, 1436-5065, 10.1007/s00703-010-0110-z.
-
(2010)
Meteorol. Atmos. Phys.
, vol.110
, Issue.3-4
, pp. 135-142
-
-
Tabari, H.1
Sabziparvar, A.A.2
Ahmadi, M.3
-
50
-
-
0033167344
-
Rainfall-runoff modeling using artificial neural networks
-
JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(1999)4:3(232).
-
Tokar A.S. Johnson P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 1999, 4(3):232-239. JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(1999)4:3(232).
-
(1999)
J. Hydrol. Eng.
, vol.4
, Issue.3
, pp. 232-239
-
-
Tokar, A.S.1
Johnson, P.A.2
-
51
-
-
20444494282
-
Case study: Finite element method and artificial neural network models for flow through Jeziorsko earthfill dam in Poland
-
JHYEFF, 1084-0699, 10.1061/(ASCE)0733-9429(2005)131:6(431).
-
Tayfur G. Swiatek D. Wita A. Singh V.P. Case study: Finite element method and artificial neural network models for flow through Jeziorsko earthfill dam in Poland. J. Hydrol. Eng. 2005, 131(6):431-440. JHYEFF, 1084-0699, 10.1061/(ASCE)0733-9429(2005)131:6(431).
-
(2005)
J. Hydrol. Eng.
, vol.131
, Issue.6
, pp. 431-440
-
-
Tayfur, G.1
Swiatek, D.2
Wita, A.3
Singh, V.P.4
-
52
-
-
70449527356
-
Comparison of an ANN approach with 1-D and 2-D methods for estimating discharge capacity of straight compound channels
-
AESODT, 0965-9978, 10.1016/j.advengsoft.2009.10.002.
-
Unal B. Mamak M. Seckin G. Cobaner M. Comparison of an ANN approach with 1-D and 2-D methods for estimating discharge capacity of straight compound channels. Adv. Eng. Software 2010, 41(2):120-129. AESODT, 0965-9978, 10.1016/j.advengsoft.2009.10.002.
-
(2010)
Adv. Eng. Software
, vol.41
, Issue.2
, pp. 120-129
-
-
Unal, B.1
Mamak, M.2
Seckin, G.3
Cobaner, M.4
-
53
-
-
28844433086
-
Modelling combined open channel flow by artificial neural networks
-
HYPRE3, 0885-6087, 10.1002/hyp.5858.
-
Yang H.C. Chang F.J. Modelling combined open channel flow by artificial neural networks. Hydrol. Processes 2005, 19(18):3747-3762. HYPRE3, 0885-6087, 10.1002/hyp.5858.
-
(2005)
Hydrol. Processes
, vol.19
, Issue.18
, pp. 3747-3762
-
-
Yang, H.C.1
Chang, F.J.2
-
54
-
-
36349001715
-
An intelligent displacement back-analysis method for earth-rockfill dams
-
CGEOEU, 0266-352X, 10.1016/j.compgeo.2007.03.002.
-
Yu Y. Zhang B. Yuan H. An intelligent displacement back-analysis method for earth-rockfill dams. Comput. Geotech. 2007, 34(6):423-434. CGEOEU, 0266-352X, 10.1016/j.compgeo.2007.03.002.
-
(2007)
Comput. Geotech.
, vol.34
, Issue.6
, pp. 423-434
-
-
Yu, Y.1
Zhang, B.2
Yuan, H.3
|