메뉴 건너뛰기




Volumn 35, Issue 5, 2008, Pages 500-510

Initial assessment of bridge backwater using an artificial neural network approach

Author keywords

Artificial neural network; Bridge backwater; Hydraulic model testing; Open channel flow

Indexed keywords

BRIDGES; ELASTIC MODULI; ENERGY DISSIPATION; FLOOD DAMAGE; FLUID MECHANICS; FOOD PROCESSING; HYDRAULICS; IMAGE CLASSIFICATION; NEURAL NETWORKS; REGRESSION ANALYSIS; SHORE PROTECTION; SURVEYS; WATER;

EID: 47149115136     PISSN: 03151468     EISSN: None     Source Type: Journal    
DOI: 10.1139/L07-142     Document Type: Article
Times cited : (21)

References (53)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000a. Artificial neural networks in hydrology. I: preliminary concepts. Journal of Hydrologic Engineering, 5(2): 115-123. doi:10.1061/(ASCE)1084-0699 (2000)5:2(115).
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000a. Artificial neural networks in hydrology. I: preliminary concepts. Journal of Hydrologic Engineering, 5(2): 115-123. doi:10.1061/(ASCE)1084-0699 (2000)5:2(115).
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000b. Artificial neural networks in hydrology. II: hydrologic applications. Journal of Hydrologic Engineering, 5(2): 124-137. doi:10.1061/(ASCE)1084-0699 (2000)5:2(124).
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000b. Artificial neural networks in hydrology. II: hydrologic applications. Journal of Hydrologic Engineering, 5(2): 124-137. doi:10.1061/(ASCE)1084-0699 (2000)5:2(124).
  • 3
    • 33749443208 scopus 로고    scopus 로고
    • Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data
    • doi:10.1016/j. envsoft.2005.09.009
    • Alp, M., and Cigizoglu, H.K. 2007. Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environmental Modelling & Software, 22(1): 2-13. doi:10.1016/j. envsoft.2005.09.009.
    • (2007) Environmental Modelling & Software , vol.22 , Issue.1 , pp. 2-13
    • Alp, M.1    Cigizoglu, H.K.2
  • 5
    • 47149089212 scopus 로고
    • Hydraulics of bridge waterways: Hydraulic design
    • 2nd ed. Office of Engineering, U.S. Department of Transportation, Federal Highway Administration, Washington, D.C
    • Bradley, J.N. 1978. Hydraulics of bridge waterways: hydraulic design. Series no. 1. 2nd ed. Office of Engineering, U.S. Department of Transportation, Federal Highway Administration, Washington, D.C.
    • (1978) Series , vol.1
    • Bradley, J.N.1
  • 6
    • 4644248935 scopus 로고
    • Hydraulics of bridge waterways: Interium report. Hydraulic Research Wallingford, Wallingford, UK
    • Brown, P.M. 1985. Hydraulics of bridge waterways: Interium report. Hydraulic Research Wallingford, Wallingford, UK. Report SR 60.
    • (1985) Report SR , vol.60
    • Brown, P.M.1
  • 7
    • 4644295924 scopus 로고
    • Afflux at arch bridges: Second interium report. Hydraulic Research Wallingford, Wallingford, UK
    • Brown, P.M. 1987. Afflux at arch bridges: Second interium report. Hydraulic Research Wallingford, Wallingford, UK. Report SR 115.
    • (1987) Report SR , vol.115
    • Brown, P.M.1
  • 8
    • 67649445202 scopus 로고
    • Afflux at arch bridges. Hydraulic Research Wallingford, Wallingford, UK
    • Brown, P.M. 1988. Afflux at arch bridges. Hydraulic Research Wallingford, Wallingford, UK. Report SR 182.
    • (1988) Report SR , vol.182
    • Brown, P.M.1
  • 9
    • 47149100617 scopus 로고
    • A comparison of the one-dimensional bridge hydraulic routines from HEC-RAS, HEC-, and WSPRO
    • US Army Corps of Engineers, Hydrologic Engineering Center, Davis, Calif
    • Brunner, W.G., and Hunt, J.H. 1995. A comparison of the one-dimensional bridge hydraulic routines from HEC-RAS, HEC-, and WSPRO. Project No: RD-41. US Army Corps of Engineers, Hydrologic Engineering Center, Davis, Calif.
    • (1995) Project No: RD-41
    • Brunner, W.G.1    Hunt, J.H.2
  • 10
    • 0034223894 scopus 로고    scopus 로고
    • Feedforward networks in financial predictions: The future that modifies the present
    • doi: 10.1111/1468-0394.00137
    • Budcema, M., and Sacco, P.L. 2000. Feedforward networks in financial predictions: the future that modifies the present. Expert Systems, 17(3): 149-170. doi: 10.1111/1468-0394.00137.
    • (2000) Expert Systems , vol.17 , Issue.3 , pp. 149-170
    • Budcema, M.1    Sacco, P.L.2
  • 11
    • 47149096294 scopus 로고    scopus 로고
    • Numerical methods for engineers: With programming and software applications
    • 3rd ed, Columbus, Ohio
    • Chapre, S.C., and Canale, R.P. 1998. Numerical methods for engineers: with programming and software applications. 3rd ed. McGraw-Hill Science/Engineering/Math, Columbus, Ohio.
    • (1998) McGraw-Hill Science/Engineering/Math
    • Chapre, S.C.1    Canale, R.P.2
  • 12
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • doi:10.1623/hysj.48.3.349.45288
    • Cigizoglu, H.K. 2003. Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrological Sciences Journal, 48(3): 349-361. doi:10.1623/hysj.48.3.349.45288.
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 13
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu, H.K., and Kişi, Ö. 2005. Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nordic Hydrology, 36(1): 49-64.
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kişi, O.2
  • 14
    • 41749110021 scopus 로고    scopus 로고
    • Prediction of hydropower energy using ANN for the feasibility of hydropower plant installation to an existing irrigation dam
    • doi:10.1007/s11269-007-9190-z
    • Cobaner, M., Haktanir, T., and Kisi, O. 2008. Prediction of hydropower energy using ANN for the feasibility of hydropower plant installation to an existing irrigation dam. Water Resources Management, 22(6): 757-774. doi:10.1007/s11269-007-9190-z.
    • (2008) Water Resources Management , vol.22 , Issue.6 , pp. 757-774
    • Cobaner, M.1    Haktanir, T.2    Kisi, O.3
  • 15
    • 47149110115 scopus 로고    scopus 로고
    • Colson, B.E., Ming, C.O., and Arcement, G.J. 1978. Backwater at bridges and densely wooded flood plains, Bogue Chitto near Johnston Station, Missisippi. Hydrological Investigations Atlas 591. Department of the Interior, U.S. Geological Survey, Denver, Colo.
    • Colson, B.E., Ming, C.O., and Arcement, G.J. 1978. Backwater at bridges and densely wooded flood plains, Bogue Chitto near Johnston Station, Missisippi. Hydrological Investigations Atlas 591. Department of the Interior, U.S. Geological Survey, Denver, Colo.
  • 16
    • 0032829433 scopus 로고    scopus 로고
    • Prévision hydrologique par réseaux de neurones artificiels: État de l'art.
    • In French, doi:10.1139/cjce-26-3-293
    • Coulibaly, P., Anctil, F., and Bobée, B. 1999. Prévision hydrologique par réseaux de neurones artificiels: état de l'art. Canadian Journal of Civil Engineering, 26(3): 293-304. [In French.] doi:10.1139/cjce-26-3-293.
    • (1999) Canadian Journal of Civil Engineering , vol.26 , Issue.3 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 17
    • 14844292558 scopus 로고    scopus 로고
    • Coulibaly, P., Haché, M., Fortin, V., and Bobée, B. 2005. Improving daily reservoir inflow forecasts with model combination. Journal of Hydrologic Engineering, 10(2): 91-99. doi:10.1061/(ASCE)1084-0699(2005) 10:2(91).
    • Coulibaly, P., Haché, M., Fortin, V., and Bobée, B. 2005. Improving daily reservoir inflow forecasts with model combination. Journal of Hydrologic Engineering, 10(2): 91-99. doi:10.1061/(ASCE)1084-0699(2005) 10:2(91).
  • 18
    • 33847755184 scopus 로고    scopus 로고
    • Neural network application for thermal image recognition of low-resolution objects
    • doi:10.1088/1464-4258/9/2/003
    • Fang, Y.-C., and Wu, B.-W. 2007. Neural network application for thermal image recognition of low-resolution objects. Journal of Optics A: Pure and Applied Optics, 9(2): 134-144. doi:10.1088/1464-4258/9/2/003.
    • (2007) Journal of Optics A: Pure and Applied Optics , vol.9 , Issue.2 , pp. 134-144
    • Fang, Y.-C.1    Wu, B.-W.2
  • 19
    • 0029223565 scopus 로고
    • Back-propagation neural networks for modeling complex systems
    • doi:10.1016/0954-1810(94)00011-S
    • Goh, A.T.C. 1995. Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9(3): 143-151. doi:10.1016/0954-1810(94)00011-S.
    • (1995) Artificial Intelligence in Engineering , vol.9 , Issue.3 , pp. 143-151
    • Goh, A.T.C.1
  • 20
    • 0028543366 scopus 로고
    • Training feed forward techniques with the Marquardt algorithm
    • doi:10.1109/72.329697
    • Hagan, M.T., and Menhaj, M.B. 1994. Training feed forward techniques with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6): 989-993. doi:10.1109/72.329697.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 22
    • 0003552345 scopus 로고
    • HEC, Hydrologic Engineering Center HEC, U.S. Army Corps of Engineers, Davis, Calif
    • HEC. 1991. Water surface profiles user's manual (HEC-2). Hydrologic Engineering Center (HEC), U.S. Army Corps of Engineers, Davis, Calif.
    • (1991) Water surface profiles user's manual (HEC-2)
  • 23
    • 47149103760 scopus 로고    scopus 로고
    • HEC 2002. River analysis system (HEC-RAS) users manual. Version 3.1 Beta. Hydrologic Engineering Center (HEC), U.S. Army Corps of Engineers, Davis, Calif.
    • HEC 2002. River analysis system (HEC-RAS) users manual. Version 3.1 Beta. Hydrologic Engineering Center (HEC), U.S. Army Corps of Engineers, Davis, Calif.
  • 24
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • doi:10.1016/0893-6080(89)90020-8
    • Hornik, K., Stinchcombe, M., and White, H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5): 359-366. doi:10.1016/0893-6080(89)90020-8.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 25
    • 0033197631 scopus 로고    scopus 로고
    • Hunt, J., Brunner, G.W., and Larock, B.E. 1999. Flow transitions in bridge backwater analysis. Journal of Hydraulic Engineering, 125(9): 981-983. doi:10.1061/(ASCE)0733-9429(1999)125:9 (981).
    • Hunt, J., Brunner, G.W., and Larock, B.E. 1999. Flow transitions in bridge backwater analysis. Journal of Hydraulic Engineering, 125(9): 981-983. doi:10.1061/(ASCE)0733-9429(1999)125:9 (981).
  • 26
    • 0033197895 scopus 로고    scopus 로고
    • Jain, S.K., Das, D., and Srivastava, D.K. 1999. Application of ANN for reservoir inflow prediction and operation. Journal of Water Resources Planning and Management, 125(5): 263-271. doi: 10.1061/(ASCE)0733-9496(1999)125: 5(263).
    • Jain, S.K., Das, D., and Srivastava, D.K. 1999. Application of ANN for reservoir inflow prediction and operation. Journal of Water Resources Planning and Management, 125(5): 263-271. doi: 10.1061/(ASCE)0733-9496(1999)125: 5(263).
  • 27
    • 0031231205 scopus 로고    scopus 로고
    • Analysis of alternatives for computing backwater at bridges. Journal of Hydraulic Engineering
    • doi:10.1061/(ASCE)0733-9429(1997)123
    • Kaatz, K.J., and James, W.P. 1997. Analysis of alternatives for computing backwater at bridges. Journal of Hydraulic Engineering, 123(9): 784-792. doi:10.1061/(ASCE)0733-9429(1997)123:9(784).
    • (1997) , vol.123 , Issue.9 , pp. 784-792
    • Kaatz, K.J.1    James, W.P.2
  • 28
    • 1642497522 scopus 로고    scopus 로고
    • Kişi, O. 2004a. River flow modelling using artificial neural networks. Journal of Hydrologic Engineering, 9(1): 60-63. doi:10.1061/(ASCE)1084-0699(2004)9:1(60).
    • Kişi, O. 2004a. River flow modelling using artificial neural networks. Journal of Hydrologic Engineering, 9(1): 60-63. doi:10.1061/(ASCE)1084-0699(2004)9:1(60).
  • 29
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptions with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation
    • doi:10.1623/hysj.49.6.1025.55720
    • Kişi, O. 2004b. Multi-layer perceptions with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrological Sciences Journal, 49(6): 1025-1040. doi:10.1623/hysj.49.6.1025.55720.
    • (2004) Hydrological Sciences Journal , vol.49 , Issue.6 , pp. 1025-1040
    • Kişi, O.1
  • 30
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • doi:10.1623/hysj.2005.50.4.683
    • Kisi, O. 2005a. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal, 50(4): 683-696. doi:10.1623/hysj.2005.50.4.683.
    • (2005) Hydrological Sciences Journal , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 31
    • 12544259920 scopus 로고    scopus 로고
    • Daily river flow forecasting using artificial neural networks and suto-regressive models
    • Kisi, O. 2005b. Daily river flow forecasting using artificial neural networks and suto-regressive models. Turkish Journal of Engineering and Environmental Science, 29: 9-20.
    • (2005) Turkish Journal of Engineering and Environmental Science , vol.29 , pp. 9-20
    • Kisi, O.1
  • 32
    • 31544465724 scopus 로고    scopus 로고
    • Comparison of three back-propagation training algorithms for two case studies
    • Kisi, O., and Uncuoglu, E. 2005. Comparison of three back-propagation training algorithms for two case studies. Indian Journal of Engineering and Materials Sciences, 12: 434-442.
    • (2005) Indian Journal of Engineering and Materials Sciences , vol.12 , pp. 434-442
    • Kisi, O.1    Uncuoglu, E.2
  • 33
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • doi:10.1016/j.jhydrol.2003.10.015
    • Lin, G.-F., and Chen, L.-H. 2004. A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology, 289(1-4): 1-8. doi:10.1016/j.jhydrol.2003.10.015.
    • (2004) Journal of Hydrology , vol.289 , Issue.1-4 , pp. 1-8
    • Lin, G.-F.1    Chen, L.-H.2
  • 34
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • doi:10.1016/S1364-8152(99)00007-9
    • Maier, H.R., and Dandy, G.C. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modelling & Software, 15(1): 101-124. doi:10.1016/S1364-8152(99)00007-9.
    • (2000) Environmental Modelling & Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 35
    • 47149094963 scopus 로고    scopus 로고
    • Mantz, P. 2004. Afflux at bridges and culverts-afflux advisor-user guide and interim report. Environment Agency, UK. R&D Project: W5-110
    • Mantz, P. 2004. Afflux at bridges and culverts-afflux advisor-user guide and interim report. Environment Agency, UK. R&D Project: W5-110
  • 38
    • 29244491457 scopus 로고    scopus 로고
    • Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a Diesel, engine
    • doi:10.1016/j.applthermaleng.2005.10.006
    • Parlak, A., Islamoglu, Y., Yasar, H., and Egrisogut, A. 2006. Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a Diesel, engine. Applied Thermal Engineering, 26(8-9): 824-828. doi:10.1016/j.applthermaleng.2005.10.006.
    • (2006) Applied Thermal Engineering , vol.26 , Issue.8-9 , pp. 824-828
    • Parlak, A.1    Islamoglu, Y.2    Yasar, H.3    Egrisogut, A.4
  • 39
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman, H., and Sunilkumar, N. 1995. Multivariate modelling of water resources time series using artificial neural networks. Hydrological Sciences Journal, 40(2): 145-164.
    • (1995) Hydrological Sciences Journal , vol.40 , Issue.2 , pp. 145-164
    • Raman, H.1    Sunilkumar, N.2
  • 40
    • 47149100038 scopus 로고    scopus 로고
    • Rumelhart, D.E., McClelland, J.L., and The PDP Research Group. 1986. Parallel recognition in modern computers. In Proceeding: Explorations in the microstructure of Cognition. 1. Foundations. MIT Press / Bradford Books, Cambridge, Mass.
    • Rumelhart, D.E., McClelland, J.L., and The PDP Research Group. 1986. Parallel recognition in modern computers. In Proceeding: Explorations in the microstructure of Cognition. Vol. 1. Foundations. MIT Press / Bradford Books, Cambridge, Mass.
  • 41
    • 0029663691 scopus 로고    scopus 로고
    • Fuzzy learning decomposition for the scheduling of hydroelectric power systems
    • doi:10.1029/95WR02971
    • Saad, M., Bigras, P., Turgeon, A., and Duquette, R. 1996. Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resources Research, 32(1): 179-186. doi:10.1029/95WR02971.
    • (1996) Water Resources Research , vol.32 , Issue.1 , pp. 179-186
    • Saad, M.1    Bigras, P.2    Turgeon, A.3    Duquette, R.4
  • 42
    • 8644265900 scopus 로고    scopus 로고
    • A simple formula for estimating backwater at bridge constrictions
    • doi:10.1139/104-024
    • Seckin, G. 2004. A simple formula for estimating backwater at bridge constrictions. Canadian Journal of Civil Engineering, 31(4): 561-568. doi:10.1139/104-024.
    • (2004) Canadian Journal of Civil Engineering , vol.31 , Issue.4 , pp. 561-568
    • Seckin, G.1
  • 43
    • 32944473172 scopus 로고    scopus 로고
    • Experimental backwater analysis around bridge waterways
    • doi:10.1139/105-048
    • Seckin, G., and Atabay, S. 2005. Experimental backwater analysis around bridge waterways. Canadian Journal of Civil Engineering, 32(6): 1015-1029. doi:10.1139/105-048.
    • (2005) Canadian Journal of Civil Engineering , vol.32 , Issue.6 , pp. 1015-1029
    • Seckin, G.1    Atabay, S.2
  • 44
    • 0032070768 scopus 로고    scopus 로고
    • Seckin, G., Yurtal, R., and Haktanir, T. 1998. Contraction and expansion losses through bridge constrictions. Journal of Hydraulic Engineering, 124(5): 546-549. doi:10.1061/(ASCE)0733-9429(1998)124:5(546).
    • Seckin, G., Yurtal, R., and Haktanir, T. 1998. Contraction and expansion losses through bridge constrictions. Journal of Hydraulic Engineering, 124(5): 546-549. doi:10.1061/(ASCE)0733-9429(1998)124:5(546).
  • 45
    • 1842384934 scopus 로고
    • User's manual for WSPRO. A computer model for water surface profile computation. U.S. Geological Survey, Reston, Va
    • Report No. FHWA-IP-89-027
    • Sherman, J.O. 1990. User's manual for WSPRO. A computer model for water surface profile computation. U.S. Geological Survey, Reston, Va. Report No. FHWA-IP-89-027.
    • (1990)
    • Sherman, J.O.1
  • 46
    • 41549130267 scopus 로고    scopus 로고
    • & Partners and HR Wallingford Ltd, Version 2.1. Sir William Hallcrow & Partners and HR Wallingford Ltd, Wallingford, UK
    • Sir William Hallcrow & Partners and HR Wallingford Ltd. 2002. ISIS Flow user manual. Version 2.1. Sir William Hallcrow & Partners and HR Wallingford Ltd., Wallingford, UK.
    • (2002) ISIS Flow user manual
    • William Hallcrow, S.1
  • 47
    • 0029416249 scopus 로고    scopus 로고
    • Smith, J., and Eli, R.N. 1995. Neural-network models of rainfall-runoff process. Journal of Water Resources Planning and Management, 121(6): 499-508. doi:10.1061/(ASCE)0733-9496(1995)121:6(499).
    • Smith, J., and Eli, R.N. 1995. Neural-network models of rainfall-runoff process. Journal of Water Resources Planning and Management, 121(6): 499-508. doi:10.1061/(ASCE)0733-9496(1995)121:6(499).
  • 48
    • 0036843660 scopus 로고    scopus 로고
    • Modeling evaporation using an artificial neural network algorithm
    • doi:10.1002/hyp.1096
    • Sudheer, K.P., Gosain, A.K., Rangan, D.M., and Saheb, S.M. 2002. Modeling evaporation using an artificial neural network algorithm. Hydrological Processes, 16(16): 3189-3202. doi:10.1002/hyp.1096.
    • (2002) Hydrological Processes , vol.16 , Issue.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Rangan, D.M.3    Saheb, S.M.4
  • 49
    • 0038546820 scopus 로고    scopus 로고
    • Sudheer, K.P., Gosain, A.K., and Ramasastri, K.S. 2003. Estimating actual evapotranspiration from limited climatic data using neural computing technique. Journal of Irrigation and Drainage Engineering, 129(3): 214-218. doi:10.1061/(ASCE)0733-9437(2003)129:3(214).
    • Sudheer, K.P., Gosain, A.K., and Ramasastri, K.S. 2003. Estimating actual evapotranspiration from limited climatic data using neural computing technique. Journal of Irrigation and Drainage Engineering, 129(3): 214-218. doi:10.1061/(ASCE)0733-9437(2003)129:3(214).
  • 50
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur, G. 2002. Artificial neural networks for sheet sediment transport. Hydrological Sciences Journal, 47(6): 879-892.
    • (2002) Hydrological Sciences Journal , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 51
    • 47149117699 scopus 로고    scopus 로고
    • Yarnell, D.L. 1934. Bridge piers as channel obstructions. U.S. Department of Agriculture, Washington, D.C. Report 442. p. 25.
    • Yarnell, D.L. 1934. Bridge piers as channel obstructions. U.S. Department of Agriculture, Washington, D.C. Report 442. p. 25.
  • 52
    • 0042231553 scopus 로고    scopus 로고
    • An engineering geology evaluation method based on an artificial neural network and its application
    • doi:10.1016/S0013-7952(97)00015-X
    • Yuanyou, X., Yanming, X., and Ruigeng, Z. 1997. An engineering geology evaluation method based on an artificial neural network and its application. Engineering Geology, 47(1-2): 149-156. doi:10.1016/S0013-7952(97)00015-X.
    • (1997) Engineering Geology , vol.47 , Issue.1-2 , pp. 149-156
    • Yuanyou, X.1    Yanming, X.2    Ruigeng, Z.3
  • 53
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial, neural networks: The state of the art
    • doi:10.1016/S0169-2070(97)00044-7
    • Zhang, G., Patuwo, B.E., and Hu, M.Y. 1998. Forecasting with artificial, neural networks: the state of the art. International Journal of Forecasting, 14(1): 35-62. doi:10.1016/S0169-2070(97)00044-7.
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.