-
1
-
-
70450187617
-
The regulation of TGFβ signal transduction
-
Moustakas, A., and Heldin, C. H. (2009) The regulation of TGFβ signal transduction. Development 136, 3699-3714
-
(2009)
Development
, vol.136
, pp. 3699-3714
-
-
Moustakas, A.1
Heldin, C.H.2
-
2
-
-
23044466047
-
Specificity and versatility in TGF-βsignaling through Smads
-
Feng, X. H., and Derynck, R. (2005) Specificity and versatility in TGF-βsignaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659-693
-
(2005)
Annu. Rev. Cell Dev. Biol.
, vol.21
, pp. 659-693
-
-
Feng, X.H.1
Derynck, R.2
-
3
-
-
33847716712
-
Negative regulation of TGF-β receptor/Smad signal transduction
-
DOI 10.1016/j.ceb.2007.02.015, PII S0955067407000294
-
Itoh, S., and ten Dijke, P. (2007) Negative regulation of TGF-β receptor/Smad signal transduction. Curr. Opin. Cell Biol. 19, 176-184 (Pubitemid 46386411)
-
(2007)
Current Opinion in Cell Biology
, vol.19
, Issue.2
, pp. 176-184
-
-
Itoh, S.1
Ten, D.P.2
-
4
-
-
58149218252
-
Regulating the stability of TGFβ receptors and Smads
-
Lönn, P., Morén, A., Raja, E., Dahl, M., and Moustakas, A. (2009) Regulating the stability of TGFβ receptors and Smads. Cell Res. 19, 21-35
-
(2009)
Cell Res.
, vol.19
, pp. 21-35
-
-
Lönn, P.1
Morén, A.2
Raja, E.3
Dahl, M.4
Moustakas, A.5
-
5
-
-
0030611757
-
Identification of Smad7, a TGFβ-inducible antagonist of TGFβ signaling
-
Nakao, A., Afrakhte, M., Morén, A., Nakayama, T., Christian, J. L., Heuchel, R., Itoh, S., Kawabata, M., Heldin, N. E., Heldin, C. H., and ten Dijke, P. (1997) Identification of Smad7, a TGFβ-inducible antagonist of TGFβ signaling. Nature 389, 631-635
-
(1997)
Nature
, vol.389
, pp. 631-635
-
-
Nakao, A.1
Afrakhte, M.2
Morén, A.3
Nakayama, T.4
Christian, J.L.5
Heuchel, R.6
Itoh, S.7
Kawabata, M.8
Heldin, N.E.9
Heldin, C.H.10
Ten Dijke, P.11
-
6
-
-
20944435641
-
Transcriptional induction of Smurf2 ubiquitin ligase by TGF-β
-
DOI 10.1016/j.febslet.2005.03.069
-
Ohashi, N., Yamamoto, T., Uchida, C., Togawa, A., Fukasawa, H., Fujigaki, Y., Suzuki, S., Kitagawa, K., Hattori, T., Oda, T., Hayashi, H., Hishida, A., and Kitagawa, M. (2005) Transcriptional induction of Smurf2 ubiquitin ligase by TGF-β. FEBS Lett. 579, 2557-2563 (Pubitemid 40615658)
-
(2005)
FEBS Letters
, vol.579
, Issue.12
, pp. 2557-2563
-
-
Ohashi, N.1
Yamamoto, T.2
Uchida, C.3
Togawa, A.4
Fukasawa, H.5
Fujigaki, Y.6
Suzuki, S.7
Kitagawa, K.8
Hattori, T.9
Oda, T.10
Hayashi, H.11
Hishida, A.12
Kitagawa, M.13
-
7
-
-
0031587828
-
The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling
-
Hayashi, H., Abdollah, S., Qiu, Y., Cai, J., Xu, Y. Y., Grinnell, B. W., Richardson, M. A., Topper, J. N., Gimbrone, M. A., Jr., Wrana, J. L., and Falb, D. (1997) The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89, 1165-1173 (Pubitemid 127678749)
-
(1997)
Cell
, vol.89
, Issue.7
, pp. 1165-1173
-
-
Hayashi, H.1
Abdollah, S.2
Qiu, Y.3
Cai, J.4
Xu, Y.-Y.5
Grinnell, B.W.6
Richardson, M.A.7
Topper, J.N.8
Gimbrone Jr., M.A.9
Wrana, J.L.10
Falb, D.11
-
8
-
-
0035918274
-
Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation
-
Ebisawa, T., Fukuchi, M., Murakami, G., Chiba, T., Tanaka, K., Imamura, T., and Miyazono, K. (2001) Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation.J. Biol. Chem. 276, 12477-12480
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 12477-12480
-
-
Ebisawa, T.1
Fukuchi, M.2
Murakami, G.3
Chiba, T.4
Tanaka, K.5
Imamura, T.6
Miyazono, K.7
-
9
-
-
0034517389
-
Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation
-
DOI 10.1016/S1097-2765(00)00134-9
-
Kavsak, P., Rasmussen, R. K., Causing, C. G., Bonni, S., Zhu, H., Thomsen, G. H., and Wrana, J. L. (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF β receptor for degradation. Mol. Cell 6, 1365-1375 (Pubitemid 32045929)
-
(2000)
Molecular Cell
, vol.6
, Issue.6
, pp. 1365-1375
-
-
Kavsak, P.1
Rasmussen, R.K.2
Causing, C.G.3
Bonni, S.4
Zhu, H.5
Thomsen, G.H.6
Wrana, J.L.7
-
10
-
-
55449107515
-
Regulation of TGF-β family signaling by E3 ubiquitin ligases
-
Inoue, Y., and Imamura, T. (2008) Regulation of TGF-β family signaling by E3 ubiquitin ligases. Cancer Sci. 99, 2107-2112
-
(2008)
Cancer Sci.
, vol.99
, pp. 2107-2112
-
-
Inoue, Y.1
Imamura, T.2
-
11
-
-
55949109059
-
The HECT E3 ligase Smurf2 is required for Mad2-dependent spindle assembly checkpoint
-
Osmundson, E. C., Ray, D., Moore, F. E., Gao, Q., Thomsen, G. H., and Kiyokawa, H. (2008) The HECT E3 ligase Smurf2 is required for Mad2-dependent spindle assembly checkpoint. J. Cell Biol. 183, 267-277
-
(2008)
J. Cell Biol.
, vol.183
, pp. 267-277
-
-
Osmundson, E.C.1
Ray, D.2
Moore, F.E.3
Gao, Q.4
Thomsen, G.H.5
Kiyokawa, H.6
-
12
-
-
17044414102
-
Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation
-
Yamashita, M., Ying, S. X., Zhang, G. M., Li, C., Cheng, S. Y., Deng, C. X.,and Zhang, Y. E. (2005) Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 121, 101-113
-
(2005)
Cell
, vol.121
, pp. 101-113
-
-
Yamashita, M.1
Ying, S.X.2
Zhang, G.M.3
Li, C.4
Cheng, S.Y.5
Deng, C.X.6
Zhang, Y.E.7
-
13
-
-
65449148205
-
Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration
-
Huang, C., Rajfur, Z., Yousefi, N., Chen, Z., Jacobson, K., and Ginsberg, M. H. (2009) Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nat. Cell Biol. 11, 624-630
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 624-630
-
-
Huang, C.1
Rajfur, Z.2
Yousefi, N.3
Chen, Z.4
Jacobson, K.5
Ginsberg, M.H.6
-
14
-
-
64249102010
-
Regulation of planar cell polarity by Smurf ubiquitin ligases
-
Narimatsu, M., Bose, R., Pye, M., Zhang, L., Miller, B., Ching, P., Sakuma, R., Luga, V., Roncari, L., Attisano, L., and Wrana, J. L. (2009) Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 137, 295-307
-
(2009)
Cell
, vol.137
, pp. 295-307
-
-
Narimatsu, M.1
Bose, R.2
Pye, M.3
Zhang, L.4
Miller, B.5
Ching, P.6
Sakuma, R.7
Luga, V.8
Roncari, L.9
Attisano, L.10
Wrana, J.L.11
-
15
-
-
33846014269
-
Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility
-
DOI 10.1083/jcb.200605135
-
Sahai, E., Garcia-Medina, R., Pouysségur, J., and Vial, E. (2007) Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J. Cell Biol. 176, 35-42 (Pubitemid 46041678)
-
(2007)
Journal of Cell Biology
, vol.176
, Issue.1
, pp. 35-42
-
-
Sahai, E.1
Garcia-Medina, R.2
Pouyssegur, J.3
Vial, E.4
-
16
-
-
33947116450
-
Ubiquitination of the GTPase Rap1B by the ubiquitin ligase Smurf2 is required for the establishment of neuronal polarity
-
DOI 10.1038/sj.emboj.7601580, PII 7601580
-
Schwamborn, J. C., Müller, M., Becker, A. H., and Püschel, A. W. (2007) Ubiquitination of the GTPase Rap1B by the ubiquitin ligase Smurf2 is required for the establishment of neuronal polarity. EMBO J. 26, 1410-1422 (Pubitemid 46398703)
-
(2007)
EMBO Journal
, vol.26
, Issue.5
, pp. 1410-1422
-
-
Schwamborn, J.C.1
Muller, M.2
Becker, A.H.3
Puschel, A.W.4
-
17
-
-
0344758986
-
Regulation of Cell Polarity and Protrusion Formation by Targeting RhoA for Degradation
-
DOI 10.1126/science.1090772
-
Wang, H. R., Zhang, Y., Ozdamar, B., Ogunjimi, A. A., Alexandrova, E., Thomsen, G. H., and Wrana, J. L. (2003) Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775-1779 (Pubitemid 37505743)
-
(2003)
Science
, vol.302
, Issue.5651
, pp. 1775-1779
-
-
Wang, H.-R.1
Zhang, Y.2
Ozdamar, B.3
Ogunjimi, A.A.4
Alexandrova, E.5
Thomsen, G.H.6
Wrana, J.L.7
-
18
-
-
58149086804
-
Smurf2 induces ubiquitin-dependent degradation of Smurf1 to prevent migration of breast cancer cells
-
Fukunaga, E., Inoue, Y., Komiya, S., Horiguchi, K., Goto, K., Saitoh, M., Miyazawa, K., Koinuma, D., Hanyu, A., and Imamura, T. (2008) Smurf2 induces ubiquitin-dependent degradation of Smurf1 to prevent migration of breast cancer cells. J. Biol. Chem. 283, 35660-35667
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 35660-35667
-
-
Fukunaga, E.1
Inoue, Y.2
Komiya, S.3
Horiguchi, K.4
Goto, K.5
Saitoh, M.6
Miyazawa, K.7
Koinuma, D.8
Hanyu, A.9
Imamura, T.10
-
19
-
-
59149091922
-
Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness
-
Jin, C., Yang, Y. A., Anver, M. R., Morris, N., Wang, X., and Zhang, Y. E.(2009) Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness. Cancer Res.69, 735-740
-
(2009)
Cancer Res.
, vol.69
, pp. 735-740
-
-
Jin, C.1
Yang, Y.A.2
Anver, M.R.3
Morris, N.4
Wang, X.5
Zhang, Y.E.6
-
20
-
-
2942536704
-
Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor β and bone morphogenetic protein
-
DOI 10.1128/MCB.24.10.4241-4254.2004
-
Kowanetz, M., Valcourt, U., Bergström, R., Heldin, C. H., and Moustakas, A. (2004) Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor β and bone morphogenetic protein. Mol. Cell. Biol. 24, 4241-4254 (Pubitemid 41070996)
-
(2004)
Molecular and Cellular Biology
, vol.24
, Issue.10
, pp. 4241-4254
-
-
Kowanetz, M.1
Valcourt, U.2
Bergstrom, R.3
Heldin, C.-H.4
Moustakas, A.5
-
21
-
-
33644994653
-
The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation
-
Jaleel, M., Villa, F., Deak, M., Toth, R., Prescott, A. R., Van Aalten, D. M., and Alessi, D. R. (2006) The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. Biochem. J. 394, 545-555
-
(2006)
Biochem. J.
, vol.394
, pp. 545-555
-
-
Jaleel, M.1
Villa, F.2
Deak, M.3
Toth, R.4
Prescott, A.R.5
Van Aalten, D.M.6
Alessi, D.R.7
-
22
-
-
0028110198
-
Identification of novel protein kinases expressed in the myocardium of the developing mouse heart
-
DOI 10.1016/0925-4773(94)90056-6
-
Ruiz, J. C., Conlon, F. L., and Robertson, E. J. (1994) Identification of novel protein kinases expressed in the myocardium of the developing mouse heart. Mech. Dev. 48, 153-164 (Pubitemid 24380373)
-
(1994)
Mechanisms of Development
, vol.48
, Issue.3
, pp. 153-164
-
-
Ruiz, J.C.1
Conlon, F.L.2
Robertson, E.J.3
-
23
-
-
77949403394
-
Lack of sik1 in mouse embryonic stem cells impairs cardiomyogenesis by down-regulating the cyclin-dependent kinase inhibitor p57kip2
-
Romito, A., Lonardo, E., Roma, G., Minchiotti, G., Ballabio, A., and Cobellis, G. (2010) Lack of sik1 in mouse embryonic stem cells impairs cardiomyogenesis by down-regulating the cyclin-dependent kinase inhibitor p57kip2. PLoS One 5, e9029
-
(2010)
PLoS One
, vol.5
-
-
Romito, A.1
Lonardo, E.2
Roma, G.3
Minchiotti, G.4
Ballabio, A.5
Cobellis, G.6
-
24
-
-
34249664888
-
SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes
-
DOI 10.1038/nm1573, PII NM1573
-
Berdeaux, R., Goebel, N., Banaszynski, L., Takemori, H., Wandless, T., Shelton, G. D., and Montminy, M. (2007) SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat. Med. 13, 597-603 (Pubitemid 46828484)
-
(2007)
Nature Medicine
, vol.13
, Issue.5
, pp. 597-603
-
-
Berdeaux, R.1
Goebel, N.2
Banaszynski, L.3
Takemori, H.4
Wandless, T.5
Shelton, G.D.6
Montminy, M.7
-
25
-
-
36448941893
-
Salt-inducible kinase in steroidogenesis and adipogenesis
-
DOI 10.1016/j.tem.2003.11.002
-
Okamoto, M., Takemori, H., and Katoh, Y. (2004) Salt-inducible kinase in steroidogenesis and adipogenesis. Trends Endocrinol. Metab. 15, 21-26 (Pubitemid 38198095)
-
(2004)
Trends in Endocrinology and Metabolism
, vol.15
, Issue.1
, pp. 21-26
-
-
Okamoto, M.1
Takemori, H.2
Katoh, Y.3
-
26
-
-
36749006673
-
SIK1 is part of a cell sodium-sensing network that regulates active sodium transport through a calcium-dependent process
-
DOI 10.1073/pnas.0706838104
-
Sjöström, M., Stenström, K., Eneling, K., Zwiller, J., Katz, A. I., Takemori, H., and Bertorello, A. M. (2007) SIK1 is part of a cell sodium-sensing network that regulates active sodium transport through a calcium-dependent process. Proc. Natl. Acad. Sci. U.S.A. 104, 16922-16927 (Pubitemid 350210966)
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, Issue.43
, pp. 16922-16927
-
-
Sjostrom, M.1
Stenstrom, K.2
Eneling, K.3
Zwiller, J.4
Katz, A.I.5
Takemori, H.6
Bertorello, A.M.7
-
27
-
-
34347401216
-
TORC-SIK cascade regulates CREB activity through the basic leucine zipper domain
-
DOI 10.1111/j.1742-4658.2007.05889.x
-
Takemori, H., Kajimura, J., and Okamoto, M. (2007) TORC-SIK cascade regulates CREB activity through the basic leucine zipper domain. FEBS J.274, 3202-3209 (Pubitemid 47024984)
-
(2007)
FEBS Journal
, vol.274
, Issue.13
, pp. 3202-3209
-
-
Takemori, H.1
Kajimura, J.2
Okamoto, M.3
-
28
-
-
34548831102
-
Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2
-
DOI 10.1038/nature06128, PII NATURE06128
-
Dentin, R., Liu, Y., Koo, S. H., Hedrick, S., Vargas, T., Heredia, J., Yates, J., 3rd, and Montminy, M. (2007) Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449, 366-369 (Pubitemid 47443476)
-
(2007)
Nature
, vol.449
, Issue.7160
, pp. 366-369
-
-
Dentin, R.1
Liu, Y.2
Koo, S.-H.3
Hedrick, S.4
Vargas, T.5
Heredia, J.6
Yates III, J.7
Montminy, M.8
-
29
-
-
50249140644
-
TGFβ induces SIK to negatively regulate type I receptor kinase signaling
-
Kowanetz, M., Lönn, P., Vanlandewijck, M., Kowanetz, K., Heldin, C. H., and Moustakas, A. (2008) TGFβ induces SIK to negatively regulate type I receptor kinase signaling. J. Cell Biol. 182, 655-662
-
(2008)
J. Cell Biol.
, vol.182
, pp. 655-662
-
-
Kowanetz, M.1
Lönn, P.2
Vanlandewijck, M.3
Kowanetz, K.4
Heldin, C.H.5
Moustakas, A.6
-
30
-
-
0037204066
-
Regulation of chemosensory receptor expression and sensory signaling by the KIN-29 Ser/Thr kinase
-
DOI 10.1016/S0896-6273(02)00572-X
-
Lanjuin, A., and Sengupta, P. (2002) Regulation of chemosensory receptor expression and sensory signaling by the KIN-29 Ser/Thr kinase. Neuron 33, 369-381 (Pubitemid 34158841)
-
(2002)
Neuron
, vol.33
, Issue.3
, pp. 369-381
-
-
Lanjuin, A.1
Sengupta, P.2
-
31
-
-
21444455684
-
C. elegans serine-threonine kinase KIN-29 modulates TGFβ signaling and regulates body size formation
-
Maduzia, L. L., Roberts, A. F., Wang, H., Lin, X., Chin, L. J., Zimmerman, C. M., Cohen, S., Feng, X. H., and Padgett, R. W. (2005) C. elegans serine-threonine kinase KIN-29 modulates TGFβ signaling and regulates body size formation. BMC Dev. Biol. 5, 8
-
(2005)
BMC Dev. Biol.
, vol.5
, pp. 8
-
-
Maduzia, L.L.1
Roberts, A.F.2
Wang, H.3
Lin, X.4
Chin, L.J.5
Zimmerman, C.M.6
Cohen, S.7
Feng, X.H.8
Padgett, R.W.9
-
32
-
-
0035129885
-
Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells
-
DOI 10.1023/A:1006461422273
-
Santner, S. J., Dawson, P. J., Tait, L., Soule, H. D., Eliason, J., Mohamed, A. N., Wolman, S. R., Heppner, G. H., and Miller, F. R. (2001) Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res. Treat. 65, 101-110 (Pubitemid 32193613)
-
(2001)
Breast Cancer Research and Treatment
, vol.65
, Issue.2
, pp. 101-110
-
-
Santner, S.J.1
Dawson, P.J.2
Tait, L.3
Soule, H.D.4
Eliason, J.5
Mohamed, A.N.6
Wolman, S.R.7
Heppner, G.H.8
Miller, F.R.9
-
33
-
-
38849199681
-
Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression
-
DOI 10.1016/j.cell.2007.12.033, PII S0092867408000548
-
Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H., Imamura, T., Ogawa, M., Masai, H., and Miyawaki, A. (2008) Visualizing spatiotemporal dynamics of multicellular cell cycle progression. Cell 132, 487-498 (Pubitemid 351191996)
-
(2008)
Cell
, vol.132
, Issue.3
, pp. 487-498
-
-
Sakaue-Sawano, A.1
Kurokawa, H.2
Morimura, T.3
Hanyu, A.4
Hama, H.5
Osawa, H.6
Kashiwagi, S.7
Fukami, K.8
Miyata, T.9
Miyoshi, H.10
Imamura, T.11
Ogawa, M.12
Masai, H.13
Miyawaki, A.14
-
34
-
-
20444439172
-
Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases
-
DOI 10.1074/jbc.M414027200
-
Morén, A., Imamura, T., Miyazono, K., Heldin, C. H., and Moustakas, A. (2005) Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J. Biol. Chem. 280, 22115-22123 (Pubitemid 40827867)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.23
, pp. 22115-22123
-
-
Moren, A.1
Imamura, T.2
Miyazono, K.3
Heldin, C.-H.4
Moustakas, A.5
-
35
-
-
58149468095
-
Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor β signaling
-
Koinuma, D., Tsutsumi, S., Kamimura, N., Taniguchi, H., Miyazawa, K., Sunamura, M., Imamura, T., Miyazono, K., and Aburatani, H. (2009) Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor β signaling. Mol. Cell. Biol. 29, 172-186
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 172-186
-
-
Koinuma, D.1
Tsutsumi, S.2
Kamimura, N.3
Taniguchi, H.4
Miyazawa, K.5
Sunamura, M.6
Imamura, T.7
Miyazono, K.8
Aburatani, H.9
-
36
-
-
16344378397
-
TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition
-
DOI 10.1091/mbc.E04-08-0658
-
Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C. H., and Moustakas, A. (2005) TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol. Biol. Cell 16, 1987-2002 (Pubitemid 40471965)
-
(2005)
Molecular Biology of the Cell
, vol.16
, Issue.4
, pp. 1987-2002
-
-
Valcourt, U.1
Kowanetz, M.2
Niimi, H.3
Heldin, C.-H.4
Moustakas, A.5
-
37
-
-
0035970035
-
Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor β growth arrest program
-
DOI 10.1073/pnas.98.3.992
-
Chen, C. R., Kang, Y., and Massagué, J. (2001) Defective repression of c-myc in breast cancer cells. A loss at the core of the transforming growth factor β growth arrest program. Proc. Natl. Acad. Sci. U.S.A. 98, 992-999 (Pubitemid 32121175)
-
(2001)
Proceedings of the National Academy of Sciences of the United States of America
, vol.98
, Issue.3
, pp. 992-999
-
-
Chen, C.-R.1
Kang, Y.2
Massague, J.3
-
38
-
-
0038369998
-
A self-enabling TGFβ response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells
-
DOI 10.1016/S1097-2765(03)00109-6
-
Kang, Y., Chen, C. R., and Massagué, J. (2003) A self-enabling TGFβ response coupled to stress signaling. Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell 11, 915-926 (Pubitemid 36566314)
-
(2003)
Molecular Cell
, vol.11
, Issue.4
, pp. 915-926
-
-
Kang, Y.1
Chen, C.-R.2
Massague, J.3
-
39
-
-
30544437191
-
14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK
-
DOI 10.1242/jcs.02670
-
Al-Hakim, A. K., Göransson, O., Deak, M., Toth, R., Campbell, D. G., Morrice, N. A., Prescott, A. R., and Alessi, D. R. (2005) 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK. J. Cell Sci. 118, 5661-5673 (Pubitemid 43079304)
-
(2005)
Journal of Cell Science
, vol.118
, Issue.23
, pp. 5661-5673
-
-
Al-Hakim, A.K.1
Goransson, O.2
Deak, M.3
Toth, R.4
Campbell, D.G.5
Morrice, N.A.6
Prescott, A.R.7
Alessi, D.R.8
-
40
-
-
33646562542
-
The logic of TGFβ signaling
-
Massagué, J., and Gomis, R. R. (2006) The logic of TGFβ signaling. FEBS Lett. 580, 2811-2820
-
(2006)
FEBS Lett.
, vol.580
, pp. 2811-2820
-
-
Massagué, J.1
Gomis, R.R.2
-
41
-
-
33644534795
-
The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells
-
Deckers, M., van Dinther, M., Buijs, J., Que, I., Löwik, C., van der Pluijm, G., and ten Dijke, P. (2006) The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 66, 2202-2209
-
(2006)
Cancer Res.
, vol.66
, pp. 2202-2209
-
-
Deckers, M.1
Van Dinther, M.2
Buijs, J.3
Que, I.4
Löwik, C.5
Van Der Pluijm, G.6
Ten Dijke, P.7
-
42
-
-
24344483878
-
Smad4 dependency defines two classes of transforming growth factor β (TGF-β) target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses
-
DOI 10.1128/MCB.25.18.8108-8125.2005
-
Levy, L., and Hill, C. S. (2005) Smad4 dependency defines two classes of transforming growth factor β (TGF-β) target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol. Cell. Biol. 25, 8108-8125 (Pubitemid 41263004)
-
(2005)
Molecular and Cellular Biology
, vol.25
, Issue.18
, pp. 8108-8125
-
-
Levy, L.1
Hill, C.S.2
-
43
-
-
0041836308
-
Hierarchical model of gene regulation by transforming growth factor β
-
DOI 10.1073/pnas.1834070100
-
Yang, Y. C., Piek, E., Zavadil, J., Liang, D., Xie, D., Heyer, J., Pavlidis, P., Kucherlapati, R., Roberts, A. B., and Böttinger, E. P. (2003) Hierarchical model of gene regulation by transforming growth factor β. Proc. Natl.Acad. Sci. U.S.A. 100, 10269-10274 (Pubitemid 37071868)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.18
, pp. 10269-10274
-
-
Yang, Y.-C.1
Piek, E.2
Zavadil, J.3
Liang, D.4
Xie, D.5
Heyert, J.6
Pavlidis, P.7
Kucherlapati, R.8
Roberts, A.B.9
Bottinger, E.P.10
|