-
1
-
-
20444382737
-
Regulation of transcription, from lambda to eukaryotes
-
Ptashne M, (2005) Regulation of transcription, from lambda to eukaryotes. Trends Biochem Sci 30: 275-279.
-
(2005)
Trends Biochem Sci
, vol.30
, pp. 275-279
-
-
Ptashne, M.1
-
2
-
-
84891703149
-
Activator control of nucleosome occupancy in activation and repression of transcription
-
doi: 10.1371/journal.pbio.0060317
-
Bryant G. O, Prabhu V, Floer M, Wang X, Spagna D, et al. (2008) Activator control of nucleosome occupancy in activation and repression of transcription. PLoS Biol 6: 2928-2939 doi:10.1371/journal.pbio.0060317.
-
(2008)
PLoS Biol
, vol.6
, pp. 2928-2939
-
-
Bryant, G.O.1
Prabhu, V.2
Floer, M.3
Wang, X.4
Spagna, D.5
-
3
-
-
77951915031
-
A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding
-
Floer M, Wang X, Prabhu V, Berrozpe G, Narayan S, et al. (2010) A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 141: 407-418.
-
(2010)
Cell
, vol.141
, pp. 407-418
-
-
Floer, M.1
Wang, X.2
Prabhu, V.3
Berrozpe, G.4
Narayan, S.5
-
4
-
-
0343924289
-
Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters
-
Kadosh D, Struhl K, (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89: 365-371.
-
(1997)
Cell
, vol.89
, pp. 365-371
-
-
Kadosh, D.1
Struhl, K.2
-
5
-
-
60349089645
-
Nucleosome positioning and gene regulation: advances through genomics
-
Jiang C, Pugh B. F, (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10: 161-172.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 161-172
-
-
Jiang, C.1
Pugh, B.F.2
-
6
-
-
0032796250
-
Analysis of the in vivo interaction between a basic repressor and an acidic activator
-
Wellhausen A, Lehming N, (1999) Analysis of the in vivo interaction between a basic repressor and an acidic activator. FEBS Lett 453: 299-304.
-
(1999)
FEBS Lett
, vol.453
, pp. 299-304
-
-
Wellhausen, A.1
Lehming, N.2
-
7
-
-
33645130011
-
Glucose signaling in Saccharomyces cerevisiae
-
Santangelo G. M, (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70: 253-282.
-
(2006)
Microbiol Mol Biol Rev
, vol.70
, pp. 253-282
-
-
Santangelo, G.M.1
-
8
-
-
0037041395
-
An extensive network of coupling among gene expression machines
-
Maniatis T, Reed R, (2002) An extensive network of coupling among gene expression machines. Nature 416: 499-506.
-
(2002)
Nature
, vol.416
, pp. 499-506
-
-
Maniatis, T.1
Reed, R.2
-
9
-
-
33745195271
-
Yeast Gal4, a transcriptional paradigm revisited
-
Traven A, Jelicic B, Sopta M, (2006) Yeast Gal4, a transcriptional paradigm revisited. EMBO Rep 7: 496-499.
-
(2006)
EMBO Rep
, vol.7
, pp. 496-499
-
-
Traven, A.1
Jelicic, B.2
Sopta, M.3
-
10
-
-
40849124517
-
Genetic evidence for sites of interaction between the Gal3 and Gal80 proteins of the Saccharomyces cerevisiae GAL gene switch
-
Diep C. Q, Tao X, Pilauri V, Losiewicz M, Blank T. E, et al. (2008) Genetic evidence for sites of interaction between the Gal3 and Gal80 proteins of the Saccharomyces cerevisiae GAL gene switch. Genetics 178: 725-736.
-
(2008)
Genetics
, vol.178
, pp. 725-736
-
-
Diep, C.Q.1
Tao, X.2
Pilauri, V.3
Losiewicz, M.4
Blank, T.E.5
-
11
-
-
0031740335
-
Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
-
Treitel M. A, Kuchin S, Carlson M, (1998) Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol 18: 6273-6280.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 6273-6280
-
-
Treitel, M.A.1
Kuchin, S.2
Carlson, M.3
-
12
-
-
0030883032
-
Regulated nuclear translocation of the Mig1 glucose repressor
-
De Vit M. J, Waddle J. A, Johnston M, (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8: 1603-1618.
-
(1997)
Mol Biol Cell
, vol.8
, pp. 1603-1618
-
-
De Vit, M.J.1
Waddle, J.A.2
Johnston, M.3
-
13
-
-
70350457498
-
Gene activation by dissociation of an inhibitor from a transcriptional activation domain
-
Jiang F, Frey B. R, Evans M. L, Friel J. C, Hopper J. E, (2009) Gene activation by dissociation of an inhibitor from a transcriptional activation domain. Mol Cell Biol 29: 5604-5610.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 5604-5610
-
-
Jiang, F.1
Frey, B.R.2
Evans, M.L.3
Friel, J.C.4
Hopper, J.E.5
-
14
-
-
21744441769
-
Eukaryotic transcription factors as direct nutrient sensors
-
Sellick C. A, Reece R. J, (2005) Eukaryotic transcription factors as direct nutrient sensors. Trends Biochem Sci 30: 405-412.
-
(2005)
Trends Biochem Sci
, vol.30
, pp. 405-412
-
-
Sellick, C.A.1
Reece, R.J.2
-
15
-
-
0037335034
-
How the ubiquitin-proteasome system controls transcription
-
Muratani M, Tansey W. P, (2003) How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 4: 1-10.
-
(2003)
Nat Rev Mol Cell Biol
, vol.4
, pp. 1-10
-
-
Muratani, M.1
Tansey, W.P.2
-
16
-
-
38349098190
-
The N-end rule pathway is a sensor of heme
-
Hu R. G, Wang H, Xia Z, Varshavsky A, (2008) The N-end rule pathway is a sensor of heme. Proc Natl Acad Sci U S A 105: 76-81.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 76-81
-
-
Hu, R.G.1
Wang, H.2
Xia, Z.3
Varshavsky, A.4
-
17
-
-
27744495040
-
A putative stimulatory role for activator turnover in gene expression
-
Lipford J. R, Smith G. T, Chi Y, Deshaies R. J, (2005) A putative stimulatory role for activator turnover in gene expression. Nature 438: 113-116.
-
(2005)
Nature
, vol.438
, pp. 113-116
-
-
Lipford, J.R.1
Smith, G.T.2
Chi, Y.3
Deshaies, R.J.4
-
18
-
-
0030867774
-
The ubiquitin system
-
Varshavsky A, (1997) The ubiquitin system. Trends Biochem Sci 22: 383-387.
-
(1997)
Trends Biochem Sci
, vol.22
, pp. 383-387
-
-
Varshavsky, A.1
-
19
-
-
0030662523
-
F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex
-
Skowyra D, Craig K. L, Tyers M, Elledge S. J, Harper J. W, (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91: 209-219.
-
(1997)
Cell
, vol.91
, pp. 209-219
-
-
Skowyra, D.1
Craig, K.L.2
Tyers, M.3
Elledge, S.J.4
Harper, J.W.5
-
20
-
-
17644386183
-
The F box protein Dsg1/Mdm30 is a transcriptional coactivator that stimulates Gal4 turnover and cotranscriptional mRNA processing
-
Muratani M, Kung C, Shokat K. M, Tansey W. P, (2005) The F box protein Dsg1/Mdm30 is a transcriptional coactivator that stimulates Gal4 turnover and cotranscriptional mRNA processing. Cell 120: 887-899.
-
(2005)
Cell
, vol.120
, pp. 887-899
-
-
Muratani, M.1
Kung, C.2
Shokat, K.M.3
Tansey, W.P.4
-
21
-
-
33748331286
-
Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo
-
Nalley K, Johnston S. A, Kodadek T, (2006) Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo. Nature 442: 1054-1057.
-
(2006)
Nature
, vol.442
, pp. 1054-1057
-
-
Nalley, K.1
Johnston, S.A.2
Kodadek, T.3
-
24
-
-
0037134015
-
Recruitment of a 19S proteasome subcomplex to an activated promoter
-
Gonzalez F, Delahodde A, Kodadek T, Johnston S. A, (2002) Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296: 548-550.
-
(2002)
Science
, vol.296
, pp. 548-550
-
-
Gonzalez, F.1
Delahodde, A.2
Kodadek, T.3
Johnston, S.A.4
-
25
-
-
45549098595
-
Activation domain-dependent monoubiquitylation of Gal4 protein is essential for promoter binding in vivo
-
Archer C. T, Delahodde A, Gonzalez F, Johnston S. A, Kodadek T, (2008) Activation domain-dependent monoubiquitylation of Gal4 protein is essential for promoter binding in vivo. J Biol Chem 283: 12614-12623.
-
(2008)
J Biol Chem
, vol.283
, pp. 12614-12623
-
-
Archer, C.T.1
Delahodde, A.2
Gonzalez, F.3
Johnston, S.A.4
Kodadek, T.5
-
26
-
-
77950342666
-
The hydrophobic patch of ubiquitin is required to protect transactivator-promoter complexes from destabilization by the proteasomal ATPases
-
Archer C. T, Kodadek T, (2010) The hydrophobic patch of ubiquitin is required to protect transactivator-promoter complexes from destabilization by the proteasomal ATPases. Nucleic Acids Res 38: 789-796.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 789-796
-
-
Archer, C.T.1
Kodadek, T.2
-
27
-
-
77953322730
-
Proteolytic instability and the action of nonclassical transcriptional activators
-
Wang X, Muratani M, Tansey W. P, Ptashne M, (2010) Proteolytic instability and the action of nonclassical transcriptional activators. Curr Biol 20: 868-871.
-
(2010)
Curr Biol
, vol.20
, pp. 868-871
-
-
Wang, X.1
Muratani, M.2
Tansey, W.P.3
Ptashne, M.4
-
28
-
-
77958111633
-
The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation
-
Malik S, Roeder R. G, (2010) The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11: 761-772.
-
(2010)
Nat Rev Genet
, vol.11
, pp. 761-772
-
-
Malik, S.1
Roeder, R.G.2
-
29
-
-
18844451820
-
Mediator and the mechanism of transcriptional activation
-
Kornberg R. D, (2005) Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30: 235-239.
-
(2005)
Trends Biochem Sci
, vol.30
, pp. 235-239
-
-
Kornberg, R.D.1
-
30
-
-
0032567081
-
Dissecting the regulatory circuitry of a eukaryotic genome
-
Holstege F. C, Jennings E. G, Wyrick J. J, Lee T. I, Hengartner C. J, et al. (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717-728.
-
(1998)
Cell
, vol.95
, pp. 717-728
-
-
Holstege, F.C.1
Jennings, E.G.2
Wyrick, J.J.3
Lee, T.I.4
Hengartner, C.J.5
-
31
-
-
77954759030
-
The human Mediator complex: a versatile, genome-wide regulator of transcription
-
Taatjes D. J, (2010) The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem Sci 35: 315-322.
-
(2010)
Trends Biochem Sci
, vol.35
, pp. 315-322
-
-
Taatjes, D.J.1
-
32
-
-
77957139539
-
Mediator and cohesin connect gene expression and chromatin architecture
-
Kagey M. H, Newman J. J, Bilodeau S, Zhan Y, Orlando D. A, et al. (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467: 430-435.
-
(2010)
Nature
, vol.467
, pp. 430-435
-
-
Kagey, M.H.1
Newman, J.J.2
Bilodeau, S.3
Zhan, Y.4
Orlando, D.A.5
-
33
-
-
79959939884
-
Human mediator subunit MED26 functions as a docking site for transcription elongation factors
-
Takahashi H, Parmely T. J, Sato S, Tomomori-Sato C, Banks C. A, et al. (2011) Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 146: 92-104.
-
(2011)
Cell
, vol.146
, pp. 92-104
-
-
Takahashi, H.1
Parmely, T.J.2
Sato, S.3
Tomomori-Sato, C.4
Banks, C.A.5
-
34
-
-
77953293350
-
p53 activates transcription by directing structural shifts in Mediator
-
Meyer K. D, Lin S. C, Bernecky C, Gao Y, Taatjes D. J, (2010) p53 activates transcription by directing structural shifts in Mediator. Nat Struct Mol Biol 17: 753-760.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 753-760
-
-
Meyer, K.D.1
Lin, S.C.2
Bernecky, C.3
Gao, Y.4
Taatjes, D.J.5
-
35
-
-
48349122949
-
Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation
-
Ding N, Zhou H, Esteve P. O, Chin H. G, Kim S, et al. (2008) Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol Cell 31: 347-359.
-
(2008)
Mol Cell
, vol.31
, pp. 347-359
-
-
Ding, N.1
Zhou, H.2
Esteve, P.O.3
Chin, H.G.4
Kim, S.5
-
36
-
-
0007104735
-
Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene
-
Nasmyth K. A, Reed S. I, (1980) Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Proc Natl Acad Sci U S A 77: 2119-2123.
-
(1980)
Proc Natl Acad Sci U S A
, vol.77
, pp. 2119-2123
-
-
Nasmyth, K.A.1
Reed, S.I.2
-
37
-
-
79954547407
-
Galactose induction of the GAL1 gene requires conditional degradation of the Mig2 repressor
-
Lim M. K, Siew W. L, Zhao J, Tay Y. W, Ang E, et al. (2011) Galactose induction of the GAL1 gene requires conditional degradation of the Mig2 repressor. Biochemical J 435: 641-649.
-
(2011)
Biochemical J
, vol.435
, pp. 641-649
-
-
Lim, M.K.1
Siew, W.L.2
Zhao, J.3
Tay, Y.W.4
Ang, E.5
-
38
-
-
0026571899
-
Ssn6-Tup1 is a general repressor of transcription in yeast
-
Keleher C. A, Redd M. J, Schultz J, Carlson M, Johnson A. D, (1992) Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68: 709-719.
-
(1992)
Cell
, vol.68
, pp. 709-719
-
-
Keleher, C.A.1
Redd, M.J.2
Schultz, J.3
Carlson, M.4
Johnson, A.D.5
-
39
-
-
0028970369
-
Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein
-
Treitel M. A, Carlson M, (1995) Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A 92: 3132-3136.
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, pp. 3132-3136
-
-
Treitel, M.A.1
Carlson, M.2
-
40
-
-
0033166694
-
SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex
-
Kitagawa K, Skowyra D, Elledge S. J, Harper J. W, Hieter P, (1999) SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell 4: 21-33.
-
(1999)
Mol Cell
, vol.4
, pp. 21-33
-
-
Kitagawa, K.1
Skowyra, D.2
Elledge, S.J.3
Harper, J.W.4
Hieter, P.5
-
41
-
-
78049237779
-
Transcriptional activation requires protection of the TATA-binding protein Tbp1 by the ubiquitin-specific protease Ubp3
-
Chew B. S, Siew W. L, Xiao B, Lehming N, (2010) Transcriptional activation requires protection of the TATA-binding protein Tbp1 by the ubiquitin-specific protease Ubp3. Biochemical J 431: 391-399.
-
(2010)
Biochemical J
, vol.431
, pp. 391-399
-
-
Chew, B.S.1
Siew, W.L.2
Xiao, B.3
Lehming, N.4
-
42
-
-
77956189904
-
Alterations in the interaction between GAL4 and GAL80 affect regulation of the yeast GAL regulon mediated by the F box protein Dsg1
-
Li Y, Chen G, Liu W, (2010) Alterations in the interaction between GAL4 and GAL80 affect regulation of the yeast GAL regulon mediated by the F box protein Dsg1. Curr Microbiol 61: 210-216.
-
(2010)
Curr Microbiol
, vol.61
, pp. 210-216
-
-
Li, Y.1
Chen, G.2
Liu, W.3
-
43
-
-
35348930465
-
Gal11p dosage-compensates transcriptional activator deletions via Taf14p
-
Lim M. K, Tang V, Le Saux A, Schüller J, Bongards C, et al. (2007) Gal11p dosage-compensates transcriptional activator deletions via Taf14p. J Mol Biol 374: 9-23.
-
(2007)
J Mol Biol
, vol.374
, pp. 9-23
-
-
Lim, M.K.1
Tang, V.2
Le Saux, A.3
Schüller, J.4
Bongards, C.5
-
44
-
-
39749150952
-
NADP regulates the yeast GAL induction system
-
Kumar P. R, Yu Y, Sternglanz R, Johnston S. A, Joshua-Tor L, (2008) NADP regulates the yeast GAL induction system. Science 319: 1090-1092.
-
(2008)
Science
, vol.319
, pp. 1090-1092
-
-
Kumar, P.R.1
Yu, Y.2
Sternglanz, R.3
Johnston, S.A.4
Joshua-Tor, L.5
-
45
-
-
0034721892
-
Srb7p is essential for the activation of a subset of genes
-
Gromöller A, Lehming N, (2000) Srb7p is essential for the activation of a subset of genes. FEBS Lett 484: 48-54.
-
(2000)
FEBS Lett
, vol.484
, pp. 48-54
-
-
Gromöller, A.1
Lehming, N.2
-
46
-
-
0034672065
-
Srb7p is a physical and physiological target of Tup1p
-
Gromöller A, Lehming N, (2000) Srb7p is a physical and physiological target of Tup1p. EMBO J 19: 6845-6852.
-
(2000)
EMBO J
, vol.19
, pp. 6845-6852
-
-
Gromöller, A.1
Lehming, N.2
-
47
-
-
0013458648
-
Analysis of protein-protein proximities using the split-ubiquitin system
-
Lehming N, (2002) Analysis of protein-protein proximities using the split-ubiquitin system. Brief Funct Genomic Proteomic 1: 230-238.
-
(2002)
Brief Funct Genomic Proteomic
, vol.1
, pp. 230-238
-
-
Lehming, N.1
-
48
-
-
28844466856
-
The split-ubiquitin sensor: measuring interactions and conformational alterations of proteins in vivo
-
Reichel C, Johnsson N, (2005) The split-ubiquitin sensor: measuring interactions and conformational alterations of proteins in vivo. Methods Enzymol 399: 757-776.
-
(2005)
Methods Enzymol
, vol.399
, pp. 757-776
-
-
Reichel, C.1
Johnsson, N.2
-
49
-
-
0034659913
-
A new method for the selection of protein interactions in mammalian cells
-
Rojo-Niersbach E, Morley D, Heck S, Lehming N, (2000) A new method for the selection of protein interactions in mammalian cells. Biochemical J 348: 585-590.
-
(2000)
Biochemical J
, vol.348
, pp. 585-590
-
-
Rojo-Niersbach, E.1
Morley, D.2
Heck, S.3
Lehming, N.4
-
50
-
-
0034608811
-
A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme
-
Kuchin S, Treich I, Carlson M, (2000) A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A 97: 7916-7920.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 7916-7920
-
-
Kuchin, S.1
Treich, I.2
Carlson, M.3
-
51
-
-
0021432459
-
A suppressor of SNF1 mutations causes constitutive high-level invertase synthesis in yeast
-
Carlson M, Osmond B. C, Neigeborn L, Botstein D, (1984) A suppressor of SNF1 mutations causes constitutive high-level invertase synthesis in yeast. Genetics 107: 19-32.
-
(1984)
Genetics
, vol.107
, pp. 19-32
-
-
Carlson, M.1
Osmond, B.C.2
Neigeborn, L.3
Botstein, D.4
-
52
-
-
0037069347
-
Transcriptional activating regions target a cyclin-dependent kinase
-
Ansari A. Z, Koh S. S, Zaman Z, Bongards C, Lehming N, et al. (2002) Transcriptional activating regions target a cyclin-dependent kinase. Proc Natl Acad Sci U S A 99: 14706-14709.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 14706-14709
-
-
Ansari, A.Z.1
Koh, S.S.2
Zaman, Z.3
Bongards, C.4
Lehming, N.5
-
53
-
-
0028146192
-
Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant
-
Finley D, Sadis S, Monia B. P, Boucher P, Ecker D. J, et al. (1994) Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol Cell Biol 14: 5501-5509.
-
(1994)
Mol Cell Biol
, vol.14
, pp. 5501-5509
-
-
Finley, D.1
Sadis, S.2
Monia, B.P.3
Boucher, P.4
Ecker, D.J.5
-
54
-
-
0024266139
-
New yeast - Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites
-
Gietz R. D, Sugino A, (1988) New yeast- Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527-534.
-
(1988)
Gene
, vol.74
, pp. 527-534
-
-
Gietz, R.D.1
Sugino, A.2
-
55
-
-
0024669291
-
A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
-
Sikorski R. S, Hieter P, (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
-
(1989)
Genetics
, vol.122
, pp. 19-27
-
-
Sikorski, R.S.1
Hieter, P.2
-
56
-
-
0023392267
-
A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains
-
Alani E, Cao L, Kleckner N, (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541-545.
-
(1987)
Genetics
, vol.116
, pp. 541-545
-
-
Alani, E.1
Cao, L.2
Kleckner, N.3
-
57
-
-
0034610333
-
A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter
-
Laser H, Bongards C, Schüller J, Heck S, Johnsson N, et al. (2000) A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter. Proc Natl Acad Sci U S A 97: 13732-13737.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 13732-13737
-
-
Laser, H.1
Bongards, C.2
Schüller, J.3
Heck, S.4
Johnsson, N.5
-
58
-
-
0029022079
-
An essential yeast gene encoding a homolog of ubiquitin-activating enzyme
-
Dohmen R. J, Stappen R, McGrath J. P, Forrova H, Kolarov J, et al. (1995) An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J Biol Chem 270: 18099-18109.
-
(1995)
J Biol Chem
, vol.270
, pp. 18099-18109
-
-
Dohmen, R.J.1
Stappen, R.2
McGrath, J.P.3
Forrova, H.4
Kolarov, J.5
|