-
1
-
-
0034507632
-
Transcription of eukaryotic protein-coding genes
-
Lee T.I., and Young R.A. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34 (2000) 77-137
-
(2000)
Annu. Rev. Genet.
, vol.34
, pp. 77-137
-
-
Lee, T.I.1
Young, R.A.2
-
2
-
-
0025224576
-
Nucleosomes, regulators of transcription
-
Grunstein M. Nucleosomes, regulators of transcription. Trends Genet. 6 (1990) 395-400
-
(1990)
Trends Genet.
, vol.6
, pp. 395-400
-
-
Grunstein, M.1
-
3
-
-
0037178788
-
Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man
-
Boube M., Joulia L., Cribbs D.L., and Bourbon H.M. Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110 (2002) 143-151
-
(2002)
Cell
, vol.110
, pp. 143-151
-
-
Boube, M.1
Joulia, L.2
Cribbs, D.L.3
Bourbon, H.M.4
-
4
-
-
18844451820
-
Mediator and the mechanism of transcriptional activation
-
Kornberg R.D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30 (2005) 235-239
-
(2005)
Trends Biochem. Sci.
, vol.30
, pp. 235-239
-
-
Kornberg, R.D.1
-
5
-
-
20444382737
-
Regulation of transcription, from lambda to eukaryotes
-
Ptashne M. Regulation of transcription, from lambda to eukaryotes. Trends Biochem. Sci. 30 (2005) 275-279
-
(2005)
Trends Biochem. Sci.
, vol.30
, pp. 275-279
-
-
Ptashne, M.1
-
6
-
-
33645130011
-
Glucose signaling in Saccharomyces cerevisiae
-
Santangelo G.M. Glucose signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70 (2006) 253-282
-
(2006)
Microbiol. Mol. Biol. Rev.
, vol.70
, pp. 253-282
-
-
Santangelo, G.M.1
-
7
-
-
0037041395
-
An extensive network of coupling among gene expression machines
-
Maniatis T., and Reed R. An extensive network of coupling among gene expression machines. Nature 416 (2002) 499-506
-
(2002)
Nature
, vol.416
, pp. 499-506
-
-
Maniatis, T.1
Reed, R.2
-
8
-
-
33745195271
-
Yeast Gal4, a transcriptional paradigm revisited
-
Traven A., Jelicic B., and Sopta M. Yeast Gal4, a transcriptional paradigm revisited. EMBO Rep. 7 (2006) 496-499
-
(2006)
EMBO Rep.
, vol.7
, pp. 496-499
-
-
Traven, A.1
Jelicic, B.2
Sopta, M.3
-
9
-
-
0026547747
-
DNA recognition by GAL4, structure of a protein-DNA complex
-
Marmorstein R., Carey M., Ptashne M., and Harrison S. C. DNA recognition by GAL4, structure of a protein-DNA complex. Nature 356 (1992) 408-414
-
(1992)
Nature
, vol.356
, pp. 408-414
-
-
Marmorstein, R.1
Carey, M.2
Ptashne, M.3
Harrison, S. C.4
-
10
-
-
0023652389
-
Deletion analysis of GAL4 defines two transcriptional activating segments
-
Ma J., and Ptashne M. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48 (1987) 847-853
-
(1987)
Cell
, vol.48
, pp. 847-853
-
-
Ma, J.1
Ptashne, M.2
-
11
-
-
0027218382
-
Determinants of binding-site specificity among yeast C6 zinc cluster proteins
-
Reece R.J., and Ptashne M. Determinants of binding-site specificity among yeast C6 zinc cluster proteins. Science 261 (1993) 909-911
-
(1993)
Science
, vol.261
, pp. 909-911
-
-
Reece, R.J.1
Ptashne, M.2
-
12
-
-
33847291392
-
Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p
-
Thoden J.B., Sellick C.A., Reece R.J., and Holden H.M. Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p. J. Biol. Chem. 282 (2007) 1534-1538
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 1534-1538
-
-
Thoden, J.B.1
Sellick, C.A.2
Reece, R.J.3
Holden, H.M.4
-
13
-
-
0033625679
-
Evidence for Gal3p's cytoplasmic location and Gal80p's dual cytoplasmic-nuclear location implicates new mechanisms for controlling Gal4p activity in Saccharomyces cerevisiae
-
Peng G., and Hopper J.E. Evidence for Gal3p's cytoplasmic location and Gal80p's dual cytoplasmic-nuclear location implicates new mechanisms for controlling Gal4p activity in Saccharomyces cerevisiae. Mol. Cell. Biol. 20 (2000) 5140-5148
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 5140-5148
-
-
Peng, G.1
Hopper, J.E.2
-
14
-
-
0037173045
-
Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein
-
Peng G., and Hopper J.E. Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein. Proc. Natl Acad. Sci. USA 99 (2002) 8548-8553
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 8548-8553
-
-
Peng, G.1
Hopper, J.E.2
-
15
-
-
0028930848
-
GAL4 interacts with TATA-binding protein and coactivators
-
Melcher K., and Johnston S.A. GAL4 interacts with TATA-binding protein and coactivators. Mol. Cell. Biol. 15 (1995) 2839-2848
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 2839-2848
-
-
Melcher, K.1
Johnston, S.A.2
-
16
-
-
0029739903
-
Quantitation of putative activator-target affinities predicts transcriptional activating potentials
-
Wu Y., Reece R.J., and Ptashne M. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J. 15 (1996) 3951-3963
-
(1996)
EMBO J.
, vol.15
, pp. 3951-3963
-
-
Wu, Y.1
Reece, R.J.2
Ptashne, M.3
-
17
-
-
0032059891
-
An activator target in the RNA polymerase II holoenzyme
-
Koh S.S., Ansari A.Z., Ptashne M., and Young R.A. An activator target in the RNA polymerase II holoenzyme. Mol. Cell 1 (1998) 895-904
-
(1998)
Mol. Cell
, vol.1
, pp. 895-904
-
-
Koh, S.S.1
Ansari, A.Z.2
Ptashne, M.3
Young, R.A.4
-
18
-
-
0001603028
-
An activator binding module of yeast RNA polymerase II holoenzyme
-
Lee Y.C., Park J.M., Min S., Han S.J., and Kim Y.J. An activator binding module of yeast RNA polymerase II holoenzyme. Mol. Cell. Biol. 19 (1999) 2967-2976
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 2967-2976
-
-
Lee, Y.C.1
Park, J.M.2
Min, S.3
Han, S.J.4
Kim, Y.J.5
-
19
-
-
0033568237
-
Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators
-
Yudkovsky N., Logie C., Hahn S., and Peterson C.L. Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes Dev. 13 (1999) 2369-2374
-
(1999)
Genes Dev.
, vol.13
, pp. 2369-2374
-
-
Yudkovsky, N.1
Logie, C.2
Hahn, S.3
Peterson, C.L.4
-
20
-
-
0034459504
-
In vivo requirement of activator-specific binding targets of mediator
-
Park J.M., Kim H.S., Han S.J., Hwang M.S., Lee Y.C., and Kim Y.J. In vivo requirement of activator-specific binding targets of mediator. Mol. Cell. Biol. 20 (2000) 8709-8719
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 8709-8719
-
-
Park, J.M.1
Kim, H.S.2
Han, S.J.3
Hwang, M.S.4
Lee, Y.C.5
Kim, Y.J.6
-
21
-
-
0035933521
-
Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit
-
Brown C.E., Howe L., Sousa K., Alley S.C., Carrozza M.J., Tan S., and Workman J.L. Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science 292 (2001) 2333-2337
-
(2001)
Science
, vol.292
, pp. 2333-2337
-
-
Brown, C.E.1
Howe, L.2
Sousa, K.3
Alley, S.C.4
Carrozza, M.J.5
Tan, S.6
Workman, J.L.7
-
22
-
-
0035423749
-
SAGA is an essential in vivo target of the yeast acidic activator Gal4p
-
Bhaumik S.R., and Green M.R. SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Genes Dev. 15 (2001) 1935-1945
-
(2001)
Genes Dev.
, vol.15
, pp. 1935-1945
-
-
Bhaumik, S.R.1
Green, M.R.2
-
23
-
-
0035903092
-
The Gal4 activation domain binds Sug2 protein, a proteasome component, in vivo and in vitro
-
Chang C., Gonzalez F., Rothermel B., Sun L., Johnston S.A., and Kodadek T. The Gal4 activation domain binds Sug2 protein, a proteasome component, in vivo and in vitro. J. Biol. Chem. 276 (2001) 30956-30963
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 30956-30963
-
-
Chang, C.1
Gonzalez, F.2
Rothermel, B.3
Sun, L.4
Johnston, S.A.5
Kodadek, T.6
-
24
-
-
0035822540
-
Evidence that Gal11 protein is a target of the Gal4 activation domain in the mediator
-
Jeong C.-J., Yang S.-H., Xie Y., Zhang L., Johnston S.A., and Kodadek T. Evidence that Gal11 protein is a target of the Gal4 activation domain in the mediator. Biochemistry 40 (2001) 9421-9427
-
(2001)
Biochemistry
, vol.40
, pp. 9421-9427
-
-
Jeong, C.-J.1
Yang, S.-H.2
Xie, Y.3
Zhang, L.4
Johnston, S.A.5
Kodadek, T.6
-
25
-
-
0037069347
-
Transcriptional activating regions target a cyclin-dependent kinase
-
Ansari A.Z., Koh S.S., Zaman Z., Bongards C., Lehming N., Young R.A., and Ptashne M. Transcriptional activating regions target a cyclin-dependent kinase. Proc. Natl Acad. Sci. USA 99 (2002) 14706-14709
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 14706-14709
-
-
Ansari, A.Z.1
Koh, S.S.2
Zaman, Z.3
Bongards, C.4
Lehming, N.5
Young, R.A.6
Ptashne, M.7
-
26
-
-
0037134015
-
Recruitment of a 19S proteasome subcomplex to an activated promoter
-
Gonzalez F., Delahodde A., Kodadek T., and Johnston S.A. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296 (2002) 548-550
-
(2002)
Science
, vol.296
, pp. 548-550
-
-
Gonzalez, F.1
Delahodde, A.2
Kodadek, T.3
Johnston, S.A.4
-
27
-
-
1042289670
-
In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer
-
Bhaumik S.R., Raha T., Aiello D.P., and Green M.R. In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Genes Dev. 18 (2004) 333-343
-
(2004)
Genes Dev.
, vol.18
, pp. 333-343
-
-
Bhaumik, S.R.1
Raha, T.2
Aiello, D.P.3
Green, M.R.4
-
28
-
-
0037716755
-
Independent recruitment in vivo by Gal4 of two complexes required for transcription
-
Bryant G.O., and Ptashne M. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol. Cell 11 (2003) 1301-1309
-
(2003)
Mol. Cell
, vol.11
, pp. 1301-1309
-
-
Bryant, G.O.1
Ptashne, M.2
-
29
-
-
0344270881
-
Association of the Mediator complex with enhancers of active genes
-
Kuras L., Borggrefe T., and Kornberg R.D. Association of the Mediator complex with enhancers of active genes. Proc. Natl Acad. Sci. USA 100 (2003) 13887-13891
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 13887-13891
-
-
Kuras, L.1
Borggrefe, T.2
Kornberg, R.D.3
-
30
-
-
11144262193
-
The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription
-
Larschan E., and Winston F. The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription. Mol. Cell. Biol. 25 (2005) 114-123
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 114-123
-
-
Larschan, E.1
Winston, F.2
-
31
-
-
8144221560
-
Targeting of Swi/Snf to the yeast GAL1 UASG requires the Mediator, TAFIIs and RNA polymerase II
-
Lemieux K., and Gaudreau L. Targeting of Swi/Snf to the yeast GAL1 UASG requires the Mediator, TAFIIs and RNA polymerase II. EMBO J. 23 (2004) 4040-4050
-
(2004)
EMBO J.
, vol.23
, pp. 4040-4050
-
-
Lemieux, K.1
Gaudreau, L.2
-
32
-
-
17644386183
-
The F box protein Dsg1/Mdm30 is a transcriptional coactivator that stimulates Gal4 turnover and cotranscriptional mRNA processing
-
Muratani M., Kung C., Shokat K.M., and Tansey W. P. The F box protein Dsg1/Mdm30 is a transcriptional coactivator that stimulates Gal4 turnover and cotranscriptional mRNA processing. Cell 120 (2005) 887-899
-
(2005)
Cell
, vol.120
, pp. 887-899
-
-
Muratani, M.1
Kung, C.2
Shokat, K.M.3
Tansey, W. P.4
-
33
-
-
0025790341
-
GAL4 is phosphorylated as a consequence of transcriptional activation
-
Sadowski I., Niedbala D., Wood K., and Ptashne M. GAL4 is phosphorylated as a consequence of transcriptional activation. Proc. Natl Acad. Sci. USA 88 (1991) 10510-10514
-
(1991)
Proc. Natl Acad. Sci. USA
, vol.88
, pp. 10510-10514
-
-
Sadowski, I.1
Niedbala, D.2
Wood, K.3
Ptashne, M.4
-
34
-
-
0033000483
-
GAL4 is regulated by the RNA polymerase II holoenzyme-associated cyclin-dependent protein kinase SRB10/CDK8
-
Hirst M., Kobor M.S., Kuriakose N., Greenblatt J., and Sadowski I. GAL4 is regulated by the RNA polymerase II holoenzyme-associated cyclin-dependent protein kinase SRB10/CDK8. Mol. Cell 3 (1999) 673-678
-
(1999)
Mol. Cell
, vol.3
, pp. 673-678
-
-
Hirst, M.1
Kobor, M.S.2
Kuriakose, N.3
Greenblatt, J.4
Sadowski, I.5
-
35
-
-
33748331286
-
Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo
-
Nalley K., Johnston S.A., and Kodadek T. Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo. Nature 442 (2006) 1054-1057
-
(2006)
Nature
, vol.442
, pp. 1054-1057
-
-
Nalley, K.1
Johnston, S.A.2
Kodadek, T.3
-
36
-
-
0036463655
-
Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress
-
Hinnebusch A.G., and Natarajan K. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot. Cell 1 (2002) 22-32
-
(2002)
Eukaryot. Cell
, vol.1
, pp. 22-32
-
-
Hinnebusch, A.G.1
Natarajan, K.2
-
37
-
-
0027049805
-
The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices, crystal structure of the protein-DNA complex
-
Ellenberger T.E., Brandl C.J., Struhl K., and Harrison S.C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices, crystal structure of the protein-DNA complex. Cell 71 (1992) 1223-1237
-
(1992)
Cell
, vol.71
, pp. 1223-1237
-
-
Ellenberger, T.E.1
Brandl, C.J.2
Struhl, K.3
Harrison, S.C.4
-
38
-
-
0023923585
-
Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein
-
Hope I.A., Mahadevan S., and Struhl K. Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein. Nature 333 (1988) 635-640
-
(1988)
Nature
, vol.333
, pp. 635-640
-
-
Hope, I.A.1
Mahadevan, S.2
Struhl, K.3
-
39
-
-
0029791550
-
Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation
-
Jackson B.M., Drysdale C.M., Natarajan K., and Hinnebusch A.G. Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation. Mol. Cell. Biol. 16 (1996) 5557-5571
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 5557-5571
-
-
Jackson, B.M.1
Drysdale, C.M.2
Natarajan, K.3
Hinnebusch, A.G.4
-
40
-
-
0031935595
-
The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex
-
Drysdale C.M., Jackson B.M., McVeigh R., Klebanow E.R., Bai Y., Kokubo T., et al. The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex. Mol. Cell. Biol. 18 (1998) 1711-1724
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 1711-1724
-
-
Drysdale, C.M.1
Jackson, B.M.2
McVeigh, R.3
Klebanow, E.R.4
Bai, Y.5
Kokubo, T.6
-
41
-
-
0032581751
-
Transcriptional activators direct histone acetyltransferase complexes to nucleosomes
-
Utley R.T., Ikeda K., Grant P.A., Cote J., Steger D.J., Eberharter A., et al. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394 (1998) 498-502
-
(1998)
Nature
, vol.394
, pp. 498-502
-
-
Utley, R.T.1
Ikeda, K.2
Grant, P.A.3
Cote, J.4
Steger, D.J.5
Eberharter, A.6
-
42
-
-
0033213632
-
Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator
-
Natarajan K., Jackson B.M., Zhou H., Winston F., and Hinnebusch A.G. Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator. Mol. Cell 4 (1999) 657-664
-
(1999)
Mol. Cell
, vol.4
, pp. 657-664
-
-
Natarajan, K.1
Jackson, B.M.2
Zhou, H.3
Winston, F.4
Hinnebusch, A.G.5
-
43
-
-
0036176172
-
Transcription activator interactions with multiple SWI/SNF subunits
-
Neely K.E., Hassan A.H., Brown C.E., Howe L., and Workman J.L. Transcription activator interactions with multiple SWI/SNF subunits. Mol. Cell. Biol. 22 (2002) 1615-1625
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 1615-1625
-
-
Neely, K.E.1
Hassan, A.H.2
Brown, C.E.3
Howe, L.4
Workman, J.L.5
-
44
-
-
0037386056
-
A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo
-
Swanson M.J., Qiu H., Sumibcay L., Krueger A., Kim S.J., Natarajan K., et al. A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo. Mol. Cell. Biol. 23 (2003) 2800-2820
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 2800-2820
-
-
Swanson, M.J.1
Qiu, H.2
Sumibcay, L.3
Krueger, A.4
Kim, S.J.5
Natarajan, K.6
-
45
-
-
0028607143
-
Regulated degradation of the transcription factor Gcn4
-
Kornitzer D., Raboy B., Kulka R.G., and Fink G.R. Regulated degradation of the transcription factor Gcn4. EMBO J. 13 (1994) 6021-6023
-
(1994)
EMBO J.
, vol.13
, pp. 6021-6023
-
-
Kornitzer, D.1
Raboy, B.2
Kulka, R.G.3
Fink, G.R.4
-
46
-
-
0034017609
-
Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex
-
Meimoun A., Holtzman T., Weissman Z., McBride H.J., Stillman D.J., Fink G.R., and Kornitzer D. Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol. Biol. Cell 11 (2000) 915-927
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 915-927
-
-
Meimoun, A.1
Holtzman, T.2
Weissman, Z.3
McBride, H.J.4
Stillman, D.J.5
Fink, G.R.6
Kornitzer, D.7
-
47
-
-
0029005178
-
Contact with a component of the polymerase II holoenzyme suffices for gene activation
-
Barberis A., Pearlberg J., Simkovich N., Farrell S., Reinagel P., Bamdad C., et al. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81 (1995) 359-368
-
(1995)
Cell
, vol.81
, pp. 359-368
-
-
Barberis, A.1
Pearlberg, J.2
Simkovich, N.3
Farrell, S.4
Reinagel, P.5
Bamdad, C.6
-
48
-
-
0032059111
-
Activator-mediated recruitment of the RNA polymerase II machinery is the predominant mechanism for transcriptional activation in yeast
-
Keaveney M., and Struhl K. Activator-mediated recruitment of the RNA polymerase II machinery is the predominant mechanism for transcriptional activation in yeast. Mol. Cell 1 (1998) 917-924
-
(1998)
Mol. Cell
, vol.1
, pp. 917-924
-
-
Keaveney, M.1
Struhl, K.2
-
49
-
-
19444366248
-
Anc1 interacts with the catalytic subunits of the general transcription factors TFIID and TFIIF, the chromatin remodeling complexes RSC and INO80, and the histone acetyltransferase complex NuA3
-
Kabani M., Michot K., Boschiero C., and Werner M. Anc1 interacts with the catalytic subunits of the general transcription factors TFIID and TFIIF, the chromatin remodeling complexes RSC and INO80, and the histone acetyltransferase complex NuA3. Biochem. Biophys. Res. Commun. 332 (2005) 398-403
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.332
, pp. 398-403
-
-
Kabani, M.1
Michot, K.2
Boschiero, C.3
Werner, M.4
-
50
-
-
0013458648
-
Analysis of protein-protein proximities using the split-ubiquitin system
-
Lehming N. Analysis of protein-protein proximities using the split-ubiquitin system. Brief. Funct. Genomic Proteomic. 1 (2002) 230-238
-
(2002)
Brief. Funct. Genomic Proteomic.
, vol.1
, pp. 230-238
-
-
Lehming, N.1
-
51
-
-
28844466856
-
The Split-Ubiquitin sensor: measuring interactions and conformational alterations of proteins In vivo
-
Reichel C., and Johnsson N. The Split-Ubiquitin sensor: measuring interactions and conformational alterations of proteins In vivo. Methods Enzymol. 399 (2005) 757-776
-
(2005)
Methods Enzymol.
, vol.399
, pp. 757-776
-
-
Reichel, C.1
Johnsson, N.2
-
52
-
-
0025944734
-
Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response
-
Nehlin J.O., Carlberg M., and Ronne H. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 10 (1991) 3373-3377
-
(1991)
EMBO J.
, vol.10
, pp. 3373-3377
-
-
Nehlin, J.O.1
Carlberg, M.2
Ronne, H.3
-
53
-
-
0029783926
-
Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression
-
Lutfiyya L.L., and Johnston M. Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol. Cell. Biol. 16 (1996) 4790-4797
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 4790-4797
-
-
Lutfiyya, L.L.1
Johnston, M.2
-
54
-
-
0031825920
-
Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site
-
Wu J., and Trumbly R.J. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site. Yeast 14 (1998) 985-1000
-
(1998)
Yeast
, vol.14
, pp. 985-1000
-
-
Wu, J.1
Trumbly, R.J.2
-
55
-
-
0025648313
-
Purification and characterization of the yeast rDNA binding protein REB1
-
Morrow B.E., Ju Q., and Warner J.R. Purification and characterization of the yeast rDNA binding protein REB1. J. Biol. Chem. 265 (1990) 20778-20783
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 20778-20783
-
-
Morrow, B.E.1
Ju, Q.2
Warner, J.R.3
-
56
-
-
0023797283
-
Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae
-
Buchman A.R., Kimmerly W.J., Rine J., and Kornberg R.D. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol. Cell. Biol. 8 (1988) 210-225
-
(1988)
Mol. Cell. Biol.
, vol.8
, pp. 210-225
-
-
Buchman, A.R.1
Kimmerly, W.J.2
Rine, J.3
Kornberg, R.D.4
-
57
-
-
0031761689
-
Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae
-
Lutfiyya L.L., Iyer V.R., DeRisi J., DeVit M.J., Brown P.O., and Johnston M. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Genetics 150 (1998) 1377-1391
-
(1998)
Genetics
, vol.150
, pp. 1377-1391
-
-
Lutfiyya, L.L.1
Iyer, V.R.2
DeRisi, J.3
DeVit, M.J.4
Brown, P.O.5
Johnston, M.6
-
58
-
-
0028970369
-
Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein
-
Treitel M.A., and Carlson M. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc. Natl Acad. Sci. USA 92 (1995) 3132-3136
-
(1995)
Proc. Natl Acad. Sci. USA
, vol.92
, pp. 3132-3136
-
-
Treitel, M.A.1
Carlson, M.2
-
59
-
-
0026571899
-
Ssn6-Tup1 is a general repressor of transcription in yeast
-
Keleher C.A., Redd M.J., Schultz J., Carlson M., and Johnson A.D. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68 (1992) 709-719
-
(1992)
Cell
, vol.68
, pp. 709-719
-
-
Keleher, C.A.1
Redd, M.J.2
Schultz, J.3
Carlson, M.4
Johnson, A.D.5
-
60
-
-
0028969881
-
Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters
-
Tzamarias D., and Struhl K. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev. 9 (1995) 821-831
-
(1995)
Genes Dev.
, vol.9
, pp. 821-831
-
-
Tzamarias, D.1
Struhl, K.2
-
61
-
-
0034708597
-
Hrs1/Med3 is a Cyc8-Tup1 corepressor target in the RNA polymerase II holoenzyme
-
Papamichos-Chronakis M., Conlan R.S., Gounalaki N., Copf T., and Tzamarias D. Hrs1/Med3 is a Cyc8-Tup1 corepressor target in the RNA polymerase II holoenzyme. J. Biol. Chem. 275 (2000) 8397-8403
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 8397-8403
-
-
Papamichos-Chronakis, M.1
Conlan, R.S.2
Gounalaki, N.3
Copf, T.4
Tzamarias, D.5
-
62
-
-
0034672065
-
Srb7p is a physical and physiological target of Tup1p
-
Gromöller A., and Lehming N. Srb7p is a physical and physiological target of Tup1p. EMBO J. 19 (2000) 6845-6852
-
(2000)
EMBO J.
, vol.19
, pp. 6845-6852
-
-
Gromöller, A.1
Lehming, N.2
-
63
-
-
0030883032
-
Regulated nuclear translocation of the Mig1 glucose repressor
-
De Vit M.J., Waddle J.A., and Johnston M. Regulated nuclear translocation of the Mig1 glucose repressor. Mol. Biol. Cell 8 (1997) 1603-1618
-
(1997)
Mol. Biol. Cell
, vol.8
, pp. 1603-1618
-
-
De Vit, M.J.1
Waddle, J.A.2
Johnston, M.3
-
65
-
-
34249003318
-
Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism
-
Sarma N.J., Haley T.M., Barbara K.E., Buford T.D., Willis K.A., and Santangelo G.M. Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism. Genetics 175 (2007) 1127-1135
-
(2007)
Genetics
, vol.175
, pp. 1127-1135
-
-
Sarma, N.J.1
Haley, T.M.2
Barbara, K.E.3
Buford, T.D.4
Willis, K.A.5
Santangelo, G.M.6
-
66
-
-
0023392267
-
A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains
-
Alani E., Cao L., and Kleckner N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116 (1987) 541-545
-
(1987)
Genetics
, vol.116
, pp. 541-545
-
-
Alani, E.1
Cao, L.2
Kleckner, N.3
-
67
-
-
0024669291
-
A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
-
Sikorski R.S., and Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122 (1989) 19-27
-
(1989)
Genetics
, vol.122
, pp. 19-27
-
-
Sikorski, R.S.1
Hieter, P.2
-
68
-
-
0029022079
-
An essential yeast gene encoding a homolog of ubiquitin-activating enzyme
-
Dohmen R.J., Stappen R., McGrath J.P., Forrova H., Kolarov J., Goffeau A., and Varshavsky A. An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J. Biol. Chem. 270 (1995) 18099-18109
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 18099-18109
-
-
Dohmen, R.J.1
Stappen, R.2
McGrath, J.P.3
Forrova, H.4
Kolarov, J.5
Goffeau, A.6
Varshavsky, A.7
-
69
-
-
34548175453
-
TFIIB/SUA7(E202G) is an allele-specific suppressor of TBP1(E186D)
-
Chew B.S., and Lehming N. TFIIB/SUA7(E202G) is an allele-specific suppressor of TBP1(E186D). Biochem. J. 406 (2007) 265-271
-
(2007)
Biochem. J.
, vol.406
, pp. 265-271
-
-
Chew, B.S.1
Lehming, N.2
-
70
-
-
0034610333
-
A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter
-
Laser H., Bongards C., Schüller J., Heck S., Johnsson N., and Lehming N. A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter. Proc. Natl Acad. Sci. USA 97 (2000) 13732-13737
-
(2000)
Proc. Natl Acad. Sci. USA
, vol.97
, pp. 13732-13737
-
-
Laser, H.1
Bongards, C.2
Schüller, J.3
Heck, S.4
Johnsson, N.5
Lehming, N.6
|