메뉴 건너뛰기




Volumn 37, Issue 4, 2012, Pages 127-133

Silencing of endogenous retroviruses: When and why do histone marks predominate?

Author keywords

[No Author keywords available]

Indexed keywords

5 HYDROXYMETHYLCYTOSINE; 5 METHYLCYTOSINE; CARBON; CYTOSINE; DIOXYGENASE; DNA; HISTONE; OCTAMER TRANSCRIPTION FACTOR 4; TET PROTEIN; UNCLASSIFIED DRUG;

EID: 84858412556     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2011.11.006     Document Type: Article
Times cited : (106)

References (53)
  • 1
    • 1542563409 scopus 로고    scopus 로고
    • Initial sequencing and comparative analysis of the mouse genome
    • Waterston R.H., et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420:520-562.
    • (2002) Nature , vol.420 , pp. 520-562
    • Waterston, R.H.1
  • 2
    • 33645757337 scopus 로고    scopus 로고
    • Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line
    • Maksakova I.A., et al. Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet. 2006, 2:e2.
    • (2006) PLoS Genet. , vol.2
    • Maksakova, I.A.1
  • 3
    • 0032901199 scopus 로고    scopus 로고
    • Cytosine methylation and mammalian development
    • Walsh C.P., Bestor T.H. Cytosine methylation and mammalian development. Genes Dev. 1999, 13:26-34.
    • (1999) Genes Dev. , vol.13 , pp. 26-34
    • Walsh, C.P.1    Bestor, T.H.2
  • 4
    • 0033615717 scopus 로고    scopus 로고
    • DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
    • Okano M., et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99:247-257.
    • (1999) Cell , vol.99 , pp. 247-257
    • Okano, M.1
  • 5
    • 68049097008 scopus 로고    scopus 로고
    • Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal
    • Hemberger M., et al. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal. Nat. Rev. Mol. Cell Biol. 2009, 10:526-537.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 526-537
    • Hemberger, M.1
  • 6
    • 0034329445 scopus 로고    scopus 로고
    • Retrovirus vector silencing is de novo methylase independent and marked by a repressive histone code
    • Pannell D., et al. Retrovirus vector silencing is de novo methylase independent and marked by a repressive histone code. EMBO J. 2000, 19:5884-5894.
    • (2000) EMBO J. , vol.19 , pp. 5884-5894
    • Pannell, D.1
  • 7
    • 77950862656 scopus 로고    scopus 로고
    • Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET
    • Matsui T., et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 2010, 464:927-931.
    • (2010) Nature , vol.464 , pp. 927-931
    • Matsui, T.1
  • 8
    • 77954232280 scopus 로고    scopus 로고
    • Repression of retrotransposal elements in mouse embryonic stem cells is primarily mediated by a DNA methylation-independent mechanism
    • Hutnick L.K., et al. Repression of retrotransposal elements in mouse embryonic stem cells is primarily mediated by a DNA methylation-independent mechanism. J. Biol. Chem. 2010, 285:21082-21091.
    • (2010) J. Biol. Chem. , vol.285 , pp. 21082-21091
    • Hutnick, L.K.1
  • 9
    • 54349114603 scopus 로고    scopus 로고
    • DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity
    • Dong K.B., et al. DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J. 2008, 27:2691-2701.
    • (2008) EMBO J. , vol.27 , pp. 2691-2701
    • Dong, K.B.1
  • 10
    • 0035891265 scopus 로고    scopus 로고
    • A histone H3 methyltransferase controls DNA methylation in Neurospora crassa
    • Tamaru H., Selker E.U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 2001, 414:277-283.
    • (2001) Nature , vol.414 , pp. 277-283
    • Tamaru, H.1    Selker, E.U.2
  • 11
    • 0037041422 scopus 로고    scopus 로고
    • Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase
    • Jackson J.P., et al. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 2002, 416:556-560.
    • (2002) Nature , vol.416 , pp. 556-560
    • Jackson, J.P.1
  • 12
    • 10744230544 scopus 로고    scopus 로고
    • Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin
    • Lehnertz B., et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 2003, 13:1192-1200.
    • (2003) Curr. Biol. , vol.13 , pp. 1192-1200
    • Lehnertz, B.1
  • 13
    • 0142227237 scopus 로고    scopus 로고
    • Targeting survival: integration site selection by retroviruses and LTR-retrotransposons
    • Bushman F.D. Targeting survival: integration site selection by retroviruses and LTR-retrotransposons. Cell 2003, 115:135-138.
    • (2003) Cell , vol.115 , pp. 135-138
    • Bushman, F.D.1
  • 14
    • 0037099413 scopus 로고    scopus 로고
    • G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis
    • Tachibana M., et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 2002, 16:1779-1791.
    • (2002) Genes Dev. , vol.16 , pp. 1779-1791
    • Tachibana, M.1
  • 15
    • 0347955358 scopus 로고    scopus 로고
    • Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains
    • Rice J.C., et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 2003, 12:1591-1598.
    • (2003) Mol. Cell , vol.12 , pp. 1591-1598
    • Rice, J.C.1
  • 16
    • 34547624303 scopus 로고    scopus 로고
    • Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
    • Mikkelsen T.S., et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007, 448:553-560.
    • (2007) Nature , vol.448 , pp. 553-560
    • Mikkelsen, T.S.1
  • 17
    • 79955042533 scopus 로고    scopus 로고
    • Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing
    • Leung D.C., et al. Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:5718-5723.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 5718-5723
    • Leung, D.C.1
  • 18
    • 0037089626 scopus 로고    scopus 로고
    • SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins
    • Schultz D.C., et al. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002, 16:919-932.
    • (2002) Genes Dev. , vol.16 , pp. 919-932
    • Schultz, D.C.1
  • 19
    • 74549116659 scopus 로고    scopus 로고
    • KAP1 controls endogenous retroviruses in embryonic stem cells
    • Rowe H.M., et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 2010, 463:237-240.
    • (2010) Nature , vol.463 , pp. 237-240
    • Rowe, H.M.1
  • 20
    • 42449091476 scopus 로고    scopus 로고
    • Primer binding site-dependent restriction of murine leukemia virus requires HP1 binding by TRIM28
    • Wolf D., et al. Primer binding site-dependent restriction of murine leukemia virus requires HP1 binding by TRIM28. J. Virol. 2008, 82:4675-4679.
    • (2008) J. Virol. , vol.82 , pp. 4675-4679
    • Wolf, D.1
  • 21
    • 79957844585 scopus 로고    scopus 로고
    • DNA Methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs
    • Karimi M.M., et al. DNA Methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 2011, 8:676-687.
    • (2011) Cell Stem Cell , vol.8 , pp. 676-687
    • Karimi, M.M.1
  • 22
    • 77954688477 scopus 로고    scopus 로고
    • 5-Azacytidine treatment reorganizes genomic histone modification patterns
    • Komashko V.M., Farnham P.J. 5-Azacytidine treatment reorganizes genomic histone modification patterns. Epigenetics 2010, 5:229-240.
    • (2010) Epigenetics , vol.5 , pp. 229-240
    • Komashko, V.M.1    Farnham, P.J.2
  • 23
    • 79952614013 scopus 로고    scopus 로고
    • Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A
    • Macfarlan T.S., et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 2011, 25:594-607.
    • (2011) Genes Dev. , vol.25 , pp. 594-607
    • Macfarlan, T.S.1
  • 24
    • 76149142791 scopus 로고    scopus 로고
    • Polycomb complexes act redundantly to repress genomic repeats and genes
    • Leeb M., et al. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev. 2010, 24:265-276.
    • (2010) Genes Dev. , vol.24 , pp. 265-276
    • Leeb, M.1
  • 25
    • 33644853355 scopus 로고    scopus 로고
    • Expression patterns and post-translational modifications associated with mammalian histone H3 variants
    • Hake S.B., et al. Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J. Biol. Chem. 2006, 281:559-568.
    • (2006) J. Biol. Chem. , vol.281 , pp. 559-568
    • Hake, S.B.1
  • 26
    • 67650293314 scopus 로고    scopus 로고
    • H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming
    • Daujat S., et al. H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nat. Struct. Mol. Biol. 2009, 16:777-781.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 777-781
    • Daujat, S.1
  • 27
    • 77956095231 scopus 로고    scopus 로고
    • Active DNA demethylation: many roads lead to Rome
    • Wu S.C., Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 2010, 11:607-620.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 607-620
    • Wu, S.C.1    Zhang, Y.2
  • 28
    • 66149146320 scopus 로고    scopus 로고
    • Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
    • Tahiliani M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
    • (2009) Science , vol.324 , pp. 930-935
    • Tahiliani, M.1
  • 29
    • 79952763586 scopus 로고    scopus 로고
    • Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine
    • Iqbal K., et al. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3642-3647.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 3642-3647
    • Iqbal, K.1
  • 30
    • 80052495940 scopus 로고    scopus 로고
    • Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
    • He Y.F., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333:1303-1307.
    • (2011) Science , vol.333 , pp. 1303-1307
    • He, Y.F.1
  • 31
    • 80052461558 scopus 로고    scopus 로고
    • Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
    • Ito S., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333:1300-1303.
    • (2011) Science , vol.333 , pp. 1300-1303
    • Ito, S.1
  • 32
    • 77956189495 scopus 로고    scopus 로고
    • Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
    • Ito S., et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133.
    • (2010) Nature , vol.466 , pp. 1129-1133
    • Ito, S.1
  • 33
    • 79551587102 scopus 로고    scopus 로고
    • Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells
    • Koh K.P., et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 2011, 8:200-213.
    • (2011) Cell Stem Cell , vol.8 , pp. 200-213
    • Koh, K.P.1
  • 34
    • 80052473600 scopus 로고    scopus 로고
    • Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development
    • Ruzov A., et al. Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res. 2011, 21:1332-1342.
    • (2011) Cell Res. , vol.21 , pp. 1332-1342
    • Ruzov, A.1
  • 35
    • 79952713567 scopus 로고    scopus 로고
    • 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming
    • Wossidlo M., et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2011, 2:241.
    • (2011) Nat. Commun. , vol.2 , pp. 241
    • Wossidlo, M.1
  • 36
    • 69249220176 scopus 로고    scopus 로고
    • DNA methylation and methyl-CpG binding proteins: developmental requirements and function
    • Bogdanović O., Veenstra G.J. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 2009, 118:549-565.
    • (2009) Chromosoma , vol.118 , pp. 549-565
    • Bogdanović, O.1    Veenstra, G.J.2
  • 37
    • 79959431845 scopus 로고    scopus 로고
    • Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain
    • Frauer C., et al. Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS ONE 2011, 6:e21306.
    • (2011) PLoS ONE , vol.6
    • Frauer, C.1
  • 38
    • 4043112183 scopus 로고    scopus 로고
    • Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2)
    • Valinluck V., et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 2004, 32:4100-4108.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 4100-4108
    • Valinluck, V.1
  • 39
    • 79955948324 scopus 로고    scopus 로고
    • Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells
    • Xu Y., et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 2011, 42:451-464.
    • (2011) Mol. Cell , vol.42 , pp. 451-464
    • Xu, Y.1
  • 40
    • 79956323623 scopus 로고    scopus 로고
    • Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation
    • Ficz G., et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011, 473:398-402.
    • (2011) Nature , vol.473 , pp. 398-402
    • Ficz, G.1
  • 41
    • 80053348585 scopus 로고    scopus 로고
    • The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes
    • Gu T.P., et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 2011, 477:606-610.
    • (2011) Nature , vol.477 , pp. 606-610
    • Gu, T.P.1
  • 42
    • 77954061853 scopus 로고    scopus 로고
    • Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA
    • Nestor C., et al. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques 2010, 48:317-319.
    • (2010) Biotechniques , vol.48 , pp. 317-319
    • Nestor, C.1
  • 43
    • 79956302047 scopus 로고    scopus 로고
    • TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity
    • Williams K., et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 2011, 473:343-348.
    • (2011) Nature , vol.473 , pp. 343-348
    • Williams, K.1
  • 44
    • 0036768615 scopus 로고    scopus 로고
    • Epigenetic reprogramming in mouse primordial germ cells
    • Hajkova P., et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 2002, 117:15-23.
    • (2002) Mech. Dev. , vol.117 , pp. 15-23
    • Hajkova, P.1
  • 45
    • 77954345408 scopus 로고    scopus 로고
    • Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway
    • Hajkova P., et al. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 2010, 329:78-82.
    • (2010) Science , vol.329 , pp. 78-82
    • Hajkova, P.1
  • 46
    • 0037298161 scopus 로고    scopus 로고
    • Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse
    • Lane N., et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 2003, 35:88-93.
    • (2003) Genesis , vol.35 , pp. 88-93
    • Lane, N.1
  • 47
    • 77951804331 scopus 로고    scopus 로고
    • MVH in piRNA processing and gene silencing of retrotransposons
    • Kuramochi-Miyagawa S., et al. MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev. 2010, 24:887-892.
    • (2010) Genes Dev. , vol.24 , pp. 887-892
    • Kuramochi-Miyagawa, S.1
  • 48
    • 78650826181 scopus 로고    scopus 로고
    • Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates
    • Globisch D., et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 2010, 5:e15367.
    • (2010) PLoS ONE , vol.5
    • Globisch, D.1
  • 49
    • 78651280460 scopus 로고    scopus 로고
    • Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine
    • Song C.X., et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 2010, 29:68-72.
    • (2010) Nat. Biotechnol. , vol.29 , pp. 68-72
    • Song, C.X.1
  • 50
    • 66149123748 scopus 로고    scopus 로고
    • The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
    • Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324:929-930.
    • (2009) Science , vol.324 , pp. 929-930
    • Kriaucionis, S.1    Heintz, N.2
  • 51
    • 78049401678 scopus 로고    scopus 로고
    • Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA
    • Szwagierczak A., et al. Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 2010, 38:e181.
    • (2010) Nucleic Acids Res. , vol.38
    • Szwagierczak, A.1
  • 52
    • 82255192294 scopus 로고    scopus 로고
    • 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging
    • Szulwach K.E., et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 2011, 10.1038/nn.2959.
    • (2011) Nat. Neurosci.
    • Szulwach, K.E.1
  • 53
    • 23844525077 scopus 로고    scopus 로고
    • Repbase Update, a database of eukaryotic repetitive elements
    • Jurka J., et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 2005, 110:462-467.
    • (2005) Cytogenet. Genome Res. , vol.110 , pp. 462-467
    • Jurka, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.