메뉴 건너뛰기




Volumn , Issue , 2011, Pages 127-154

A survey on ROC-based ordinal regression

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84857532467     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-642-14125-6_7     Document Type: Chapter
Times cited : (13)

References (66)
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121-167 (1998)
    • (1998) Data Min. Knowl. Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 21844453228 scopus 로고    scopus 로고
    • Gaussian processes for ordinal regression
    • W. Chu, Z. Ghahramani, Gaussian processes for ordinal regression. J. Mach. Learn. Res. 6, 1019-1041 (2005)
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1019-1041
    • Chu, W.1    Ghahramani, Z.2
  • 10
    • 33847626350 scopus 로고    scopus 로고
    • Support vector ordinal regression
    • W. Chu, S. Keerthi, Support vector ordinal regression. Neural Comput. 19(3), 792-815 (2007)
    • (2007) Neural Comput , vol.19 , Issue.3 , pp. 792-815
    • Chu, W.1    Keerthi, S.2
  • 13
    • 10844275086 scopus 로고    scopus 로고
    • Auc optimization versus error rate minimization
    • (MIT, Vancouver, Canada
    • C. Cortes, M. Mohri, AUC optimization versus error rate minimization, in Advances in Neural Information Processing Systems, vol. 16 (MIT, Vancouver, Canada, 2003), pp. 313-320
    • (2003) Advances in Neural Information Processing Systems , vol.16 , pp. 313-320
    • Cortes, C.1    Mohri, M.2
  • 14
    • 21844435105 scopus 로고    scopus 로고
    • Confidence intervals for the area under the roc curve
    • (MIT, Vancouver, Canada
    • C. Cortes, M. Mohri. Confidence intervals for the area under the ROC curve, in Advances in Neural Information Processing Systems, vol. 17 (MIT, Vancouver, Canada, 2004), pp. 305-312
    • (2004) Advances in Neural Information Processing Systems , vol.17 , pp. 305-312
    • Cortes, C.1    Mohri, M.2
  • 18
    • 17444394829 scopus 로고    scopus 로고
    • Transitivity frameworks for reciprocal relations: Cycle-transitivity versus fg-transitivity
    • B. De Baets, H. De Meyer, Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity. Fuzzy Sets Syst. 152, 249-270 (2005)
    • (2005) Fuzzy Sets Syst , vol.152 , pp. 249-270
    • De Baets, B.1    De Meyer, H.2
  • 20
    • 26844570243 scopus 로고    scopus 로고
    • Cycle-transitive comparison of independent random variables
    • B. De Schuymer, H. De Meyer, B. De Baets, Cycle-transitive comparison of independent random variables. J. Multivar. Anal. 96, 352-373 (2005)
    • (2005) J. Multivar. Anal , vol.96 , pp. 352-373
    • De Schuymer, B.1    De Meyer, H.2    De Baets, B.3
  • 22
    • 0033912712 scopus 로고    scopus 로고
    • Comparing three-class diagnostic tests by threeway roc analysis
    • S. Dreiseitl, L. Ohno-Machado, M. Binder, Comparing three-class diagnostic tests by threeway ROC analysis. Med. Decis. Mak. 20, 323-331 (2000)
    • (2000) Med. Decis. Mak , vol.20 , pp. 323-331
    • Dreiseitl, S.1    Ohno-Machado, L.2    Binder, M.3
  • 24
    • 4644367942 scopus 로고    scopus 로고
    • An efficient boosting algorithm for combining preferences
    • Y. Freund, R. Yier, R. Schapire, Y. Singer, An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933-969 (2003)
    • (2003) J. Mach. Learn. Res , vol.4 , pp. 933-969
    • Freund, Y.1    Yier, R.2    Schapire, R.3    Singer, Y.4
  • 25
    • 19044382587 scopus 로고    scopus 로고
    • Round robin classification
    • J. Fürnkranz, Round robin classification. J. Mach. Learn. Res. 2, 723-747 (2002)
    • (2002) J. Mach. Learn. Res , vol.2 , pp. 723-747
    • Fürnkranz, J.1
  • 27
    • 27944450863 scopus 로고    scopus 로고
    • Concordance probability and discriminatory power in proportional hazards regression
    • M. Gönen, G. Heller, Concordance probability and discriminatory power in proportional hazards regression. Biometrika 92(4), 965-970 (2005)
    • (2005) Biometrika , vol.92 , Issue.4 , pp. 965-970
    • Gönen, M.1    Heller, G.2
  • 28
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalization of the area under the roc curve for multiple class problems
    • D. Hand, R. Till, A simple generalization of the area under the ROC curve for multiple class problems. Mach. Learn. 45, 171-186 (2001)
    • (2001) Mach. Learn , vol.45 , pp. 171-186
    • Hand, D.1    Till, R.2
  • 29
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristics curve
    • J. Hanley, B. McNeil, The meaning and use of the area under a receiver operating characteristics curve. Radiology 143, 29-36 (1982)
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.1    McNeil, B.2
  • 30
    • 0020524559 scopus 로고
    • A method of comparing receiver operating characteristics curves derived from the same class
    • J. Hanley, B.McNeil, A method of comparing receiver operating characteristics curves derived from the same class. Radiology 148, 839-843 (1983)
    • (1983) Radiology , vol.148 , pp. 839-843
    • Hanley, J.1    McNeil, B.2
  • 33
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • T. Hastie, R. Tibshirani, Classification by pairwise coupling. Ann. Stat. 26(2), 451-471 (1998)
    • (1998) Ann. Stat , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 34
    • 33745765253 scopus 로고    scopus 로고
    • Learning sparse representations by non-negative matrix factorization and sequential cone programming
    • M. Heller, B. Schnörr, Learning sparse representations by non-negative matrix factorization and sequential cone programming. J. Mach. Learn. Res. 7, 1385-1407 (2006)
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1385-1407
    • Heller, M.1    Schnörr, B.2
  • 35
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • ed. by A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (MIT
    • R. Herbrich, T. Graepel, K. Obermayer, Large margin rank boundaries for ordinal regression, in Advances in Large Margin Classifiers, ed. by A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (MIT, 2000), pp. 115-132
    • (2000) Advances in Large Margin Classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 38
    • 77958494866 scopus 로고    scopus 로고
    • Is an ordinal class structure useful in classifier learning?
    • E. Hüllermeier, J. Hühn, Is an ordinal class structure useful in classifier learning? Int. J. Data Min. Model. Manag. 1(1), 45-67 (2009)
    • (2009) Int. J. Data Min. Model. Manag , vol.1 , Issue.1 , pp. 45-67
    • Hüllermeier, E.1    Hühn, J.2
  • 40
    • 0001547779 scopus 로고
    • The cutting plane method for convex programs
    • J. Kelley, The cutting plane method for convex programs. J. Soc. Ind. Appl. Math. 9, 703-712 (1960)
    • (1960) J. Soc. Ind. Appl. Math , vol.9 , pp. 703-712
    • Kelley, J.1
  • 44
    • 49249099254 scopus 로고    scopus 로고
    • A probabilistic framework for the design of instancebased supervised ranking algorithms in an ordinal setting
    • S. Lievens, B. De Baets, K. Cao-Van, A probabilistic framework for the design of instancebased supervised ranking algorithms in an ordinal setting. Ann. Oper. Res. 163, 115-142 (2008)
    • (2008) Ann. Oper. Res , vol.163 , pp. 115-142
    • Lievens, S.1    De Baets, B.2    Cao-Van, K.3
  • 45
    • 33750681345 scopus 로고    scopus 로고
    • Large-margin thresholded ensembles for ordinal regression: Theory and practice
    • H. Lin, L. Li, Large-margin thresholded ensembles for ordinal regression: Theory and practice. Lect. Notes Comput. Sci. 4264, 319-333 (2006)
    • (2006) Lect. Notes Comput. Sci , vol.4264 , pp. 319-333
    • Lin, H.1    Li, L.2
  • 47
    • 0001306637 scopus 로고
    • Regression models for ordinal data
    • P. McCullagh, Regression models for ordinal data. J. R. Stat. Soc. B 42(2), 109-142 (1980)
    • (1980) J. R. Stat. Soc. B , vol.42 , Issue.2 , pp. 109-142
    • McCullagh, P.1
  • 48
    • 7944220109 scopus 로고    scopus 로고
    • Ordered multiple-class roc analysis with continuous measurements
    • C. Nakas, C. Yiannoutsos, Ordered multiple-class ROC analysis with continuous measurements. Stat. Med. 22, 3437-3449 (2004)
    • (2004) Stat. Med , vol.22 , pp. 3437-3449
    • Nakas, C.1    Yiannoutsos, C.2
  • 51
    • 0003350979 scopus 로고    scopus 로고
    • Decision trees for ordinal classification
    • R. Potharst, J.C. Bioch, Decision trees for ordinal classification. Intell. Data Process. 4(2) (2000)
    • (2000) Intell. Data Process , vol.4 , pp. 2
    • Potharst, R.1    Bioch, J.C.2
  • 53
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-versus-all classification
    • R. Rifkin, A. Klautau, In defense of one-versus-all classification. J. Mach. Learn. Res. 5, 101-143 (2004)
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 101-143
    • Rifkin, R.1    Klautau, A.2
  • 55
    • 84899011021 scopus 로고    scopus 로고
    • Ranking with large margin principle: Two approaches
    • (MIT, Vancouver, Canada
    • A. Shashua, A. Levin, Ranking with large margin principle: Two approaches, in Advances in Neural Information Processing Systems, vol. 16 (MIT, Vancouver, Canada, 2003), pp. 937-944
    • (2003) Advances in Neural Information Processing Systems , vol.16 , pp. 937-944
    • Shashua, A.1    Levin, A.2
  • 56
    • 27844552462 scopus 로고    scopus 로고
    • Regression for ordinal variables without underlying continuous variables
    • V. Torra, J. Domingo-Ferrer, J.M.Mateo-Sanz, M. Ng, Regression for ordinal variables without underlying continuous variables. Inf. Sci. 176, 465-476 (2006)
    • (2006) Inf. Sci , vol.176 , pp. 465-476
    • Torra, V.1    Domingo-Ferrer, J.2    Mateo-Sanz, J.M.3    Ng, M.4
  • 57
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and independent output variables
    • Y. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, Large margin methods for structured and independent output variables. J. Mach. Learn. Res. 6, 1453-1484 (2005)
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1453-1484
    • Tsochantaridis, Y.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 58
    • 27844513324 scopus 로고    scopus 로고
    • Aggregating classifiers with ordinal response structure
    • G. Tutz, K. Hechenbichler, Aggregating classifiers with ordinal response structure. J. Stat. Comput. Simul. 75(5), (2004)
    • (2004) J. Stat. Comput. Simul , vol.75 , pp. 5
    • Tutz, G.1    Hechenbichler, K.2
  • 59
    • 84890195284 scopus 로고    scopus 로고
    • On the era ranking representability of multi-class classifiers
    • submitted
    • W. Waegeman, B. De Baets, On the ERA ranking representability of multi-class classifiers. Artif. Intell. (2009) submitted
    • (2009) Artif. Intell
    • Waegeman, W.1    De Baets, B.2
  • 61
    • 56949093676 scopus 로고    scopus 로고
    • Learning layered ranking functions with structured support vector machines
    • W. Waegeman, B. De Baets, L. Boullart, Learning layered ranking functions with structured support vector machines. Neural Netw. 21(10), 1511-1523 (2008)
    • (2008) Neural Netw , vol.21 , Issue.10 , pp. 1511-1523
    • Waegeman, W.1    De Baets, B.2    Boullart, L.3
  • 62
    • 40249118623 scopus 로고    scopus 로고
    • On the scalability of ordered multi-class roc analysis
    • W. Waegeman, B. De Baets, L. Boullart, On the scalability of ordered multi-class ROC analysis. Comput. Stat. Data Anal. 52, 3371-3388 (2008)
    • (2008) Comput. Stat. Data Anal , vol.52 , pp. 3371-3388
    • Waegeman, W.1    De Baets, B.2    Boullart, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.