메뉴 건너뛰기




Volumn 29, Issue 1, 2008, Pages 1-9

ROC analysis in ordinal regression learning

Author keywords

Machine learning; Ordinal regression; Performance measures; Ranking; ROC analysis; Unbalanced learning problems

Indexed keywords

ALGORITHMS; ERROR DETECTION; MATHEMATICAL MODELS; OPTIMIZATION; PROBLEM SOLVING; REGRESSION ANALYSIS;

EID: 35649024735     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2007.07.019     Document Type: Article
Times cited : (93)

References (23)
  • 2
    • 35648940069 scopus 로고    scopus 로고
    • Agresti, A., 2002. Categorical Data Analysis, 2nd version, John Wiley and Sons.
  • 3
    • 21844453228 scopus 로고    scopus 로고
    • Gaussian processes for ordinal regression
    • Chu W., and Ghahramani Z. Gaussian processes for ordinal regression. J. Machine Learn. Res. 6 (2005) 1019-1041
    • (2005) J. Machine Learn. Res. , vol.6 , pp. 1019-1041
    • Chu, W.1    Ghahramani, Z.2
  • 4
    • 35648977904 scopus 로고    scopus 로고
    • Chu, W., Keerthi, S., 2005. New approaches to support vector ordinal regression. In: Proc. Internat. Conf. on Machine Learn., Bonn, Germany, pp. 321-328.
  • 5
    • 10844275086 scopus 로고    scopus 로고
    • AUC optimization versus error rate minimization
    • The MIT Press, Vancouver, Canada
    • Cortes C., and Mohri M. AUC optimization versus error rate minimization. Adv. Neural Inform. Process. Systems vol. 16 (2003), The MIT Press, Vancouver, Canada
    • (2003) Adv. Neural Inform. Process. Systems , vol.16
    • Cortes, C.1    Mohri, M.2
  • 6
    • 35648966858 scopus 로고    scopus 로고
    • Crammer, K., Singer, Y., 2001. Pranking with ranking. In: Proc. Conf. on Neural Inform. Process. Systems, Vancouver, Canada, pp. 641-647.
  • 8
    • 0033912712 scopus 로고    scopus 로고
    • Comparing three-class diagnostic tests by three-way ROC analysis
    • Dreiseitl S., Ohno-Machado L., and Binder M. Comparing three-class diagnostic tests by three-way ROC analysis. Med. Decis. Making 20 (2000) 323-331
    • (2000) Med. Decis. Making , vol.20 , pp. 323-331
    • Dreiseitl, S.1    Ohno-Machado, L.2    Binder, M.3
  • 9
    • 9444288762 scopus 로고    scopus 로고
    • Ferri, C., Hernandez-Orallo, J., Salido, M., 2003. Volume under ROC surface for multi-class problems. In: Proc. European Conf. on Machine Learn., Dubrovnik, Croatia, pp. 108-120.
  • 10
    • 33646054819 scopus 로고    scopus 로고
    • Multi-class ROC analysis from a multi-objective optimization perspective
    • Fieldsend J., and Everson M. Multi-class ROC analysis from a multi-objective optimization perspective. Pattern Recognition Lett. 27 (2006) 918-927
    • (2006) Pattern Recognition Lett. , vol.27 , pp. 918-927
    • Fieldsend, J.1    Everson, M.2
  • 11
    • 1942421135 scopus 로고    scopus 로고
    • Flach, P., 2003. The geometry of ROC space: Understanding machine learning metrics through ROC isometrics. In: Proc. Internat. Conf. Machine Learn., Washington, DC, USA.
  • 12
    • 35648940569 scopus 로고    scopus 로고
    • Flach, P., August 2004. The many faces of ROC analysis in machine learning. In: Tutorial Presented at the European Conf. on Machine Learn., Valencia, Spain.
  • 13
    • 35648939015 scopus 로고    scopus 로고
    • Frank, E., Hall, M., 2001. A simple approach to ordinal classification. In: Proc. European Conf. Machine Learn., pp. 146-156.
  • 14
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalization of the area under the ROC curve for multiple class problems
    • Hand D., and Till R. A simple generalization of the area under the ROC curve for multiple class problems. Machine Learn. 45 (2001) 171-186
    • (2001) Machine Learn. , vol.45 , pp. 171-186
    • Hand, D.1    Till, R.2
  • 20
    • 7944220109 scopus 로고    scopus 로고
    • Ordered multiple-class ROC analysis with continuous measurements
    • Nakas C., and Yiannoutsos C. Ordered multiple-class ROC analysis with continuous measurements. Statist. Med. 22 (2004) 3437-3449
    • (2004) Statist. Med. , vol.22 , pp. 3437-3449
    • Nakas, C.1    Yiannoutsos, C.2
  • 22
    • 84899011021 scopus 로고    scopus 로고
    • Ranking with large margin principle: Two approaches
    • The MIT Press, Vancouver, Canada
    • Shashua A., and Levin A. Ranking with large margin principle: Two approaches. Proc. Internat. Conf. Neural Inform. Process. Systems (2003), The MIT Press, Vancouver, Canada 937-944
    • (2003) Proc. Internat. Conf. Neural Inform. Process. Systems , pp. 937-944
    • Shashua, A.1    Levin, A.2
  • 23
    • 1942451946 scopus 로고    scopus 로고
    • Yan, L., Dodier, R., Mozer, M., Wolniewiecz, R., 2003. Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic. In: Proc. Internat. Conf. on Machine Learn., Washington DC, USA, pp. 848-855.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.