메뉴 건너뛰기




Volumn 1, Issue 3, 2011, Pages 215-230

Contrast and change mining

Author keywords

[No Author keywords available]

Indexed keywords

CHANGE ANALYSIS; CHANGE MINING; STRATEGIC ISSUES; SUBFIELDS;

EID: 84857151868     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.27     Document Type: Article
Times cited : (30)

References (86)
  • 4
    • 24344498330 scopus 로고    scopus 로고
    • Mining data streams: a review
    • Gaber MM, Zaslavsky A, Krishnaswamy S. Mining data streams: a review. SIGMOD Rec 2005, 34:18-26. doi:http://doi.acm.org/10.1145/1083784.1083789.
    • (2005) SIGMOD Rec , vol.34 , pp. 18-26
    • Gaber, M.M.1    Zaslavsky, A.2    Krishnaswamy, S.3
  • 6
    • 10644220350 scopus 로고    scopus 로고
    • A framework for measuring differences in data characteristics
    • Ganti V, Gehrke J, Ramakrishnan R, Loh WY. A framework for measuring differences in data characteristics. J Comput Syst Sci 2002, 64:542-578. doi:http://dx.doi.org/10.1006/jcss.2001.1808.
    • (2002) J Comput Syst Sci , vol.64 , pp. 542-578
    • Ganti, V.1    Gehrke, J.2    Ramakrishnan, R.3    Loh, W.Y.4
  • 7
    • 61749084093 scopus 로고    scopus 로고
    • Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining
    • Novak PK, Lavrač N, Webb GI. Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining. J Mach Learn Res 2009, 10:377-403.
    • (2009) J Mach Learn Res , vol.10 , pp. 377-403
    • Novak, P.K.1    Lavrač, N.2    Webb, G.I.3
  • 8
    • 0035476841 scopus 로고    scopus 로고
    • Mining the change of customer behavior in an internet shopping mall
    • Song HS, Kim JK, Kim SH. Mining the change of customer behavior in an internet shopping mall. Expert Syst Appl 2001, 21:157-168.
    • (2001) Expert Syst Appl , vol.21 , pp. 157-168
    • Song, H.S.1    Kim, J.K.2    Kim, S.H.3
  • 9
    • 17844377335 scopus 로고    scopus 로고
    • Mining changes in customer behavior in retail marketing
    • Chen MC, Chiu AL, Chang HH. Mining changes in customer behavior in retail marketing. Expert Syst Appl 2005, 28:773-781.
    • (2005) Expert Syst Appl , vol.28 , pp. 773-781
    • Chen, M.C.1    Chiu, A.L.2    Chang, H.H.3
  • 10
    • 33745187176 scopus 로고    scopus 로고
    • Detecting the change of customer behavior based on decision tree analysis
    • Kim JK, Song HS, Kim TS, Kim HK. Detecting the change of customer behavior based on decision tree analysis. Expert Syst 2005, 22:193-205.
    • (2005) Expert Syst , vol.22 , pp. 193-205
    • Kim, J.K.1    Song, H.S.2    Kim, T.S.3    Kim, H.K.4
  • 11
    • 57749111947 scopus 로고    scopus 로고
    • A change detection method for sequential patterns
    • Tsai CY, Shieh YC. A change detection method for sequential patterns. Decis Support Syst 2009, 46:501-511. doi:http://dx.doi.org/10.1016/j.dss.2008.09.003.
    • (2009) Decis Support Syst , vol.46 , pp. 501-511
    • Tsai, C.Y.1    Shieh, Y.C.2
  • 12
    • 29844455221 scopus 로고    scopus 로고
    • What's new: finding significant differences in network data streams
    • Cormode G, Muthukrishnan S. What's new: finding significant differences in network data streams. IEEE/ ACM Trans Netw 2005, 13:1219-1232. doi:http:// dx.doi.org/10.1109/TNET.2005.860096.
    • (2005) IEEE/ ACM Trans Netw , vol.13 , pp. 1219-1232
    • Cormode, G.1    Muthukrishnan, S.2
  • 14
    • 33745843245 scopus 로고    scopus 로고
    • A framework for discovering interesting business changes from data
    • Böttcher M, Nauck D, Borgelt C, Kruse R. A framework for discovering interesting business changes from data. BT Technol J 2006, 24:219-228. doi:http:// dx.doi.org/10.1007/s10550-006-0064-3.
    • (2006) BT Technol J , vol.24 , pp. 219-228
    • Böttcher, M.1    Nauck, D.2    Borgelt, C.3    Kruse, R.4
  • 15
    • 53849105788 scopus 로고    scopus 로고
    • Mining changing customer segments in dynamic markets
    • Böttcher M, Spott M, Nauck D, Kruse R. Mining changing customer segments in dynamic markets. Expert Syst Appl 2009; 36(1):155-164. doi:http:// dx.doi.org/10.1016/j.eswa.2007.09.006.
    • (2009) Expert Syst Appl , vol.36 , Issue.1 , pp. 155-164
    • Böttcher, M.1    Spott, M.2    Nauck, D.3    Kruse, R.4
  • 18
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • Schlimmer JC, Granger RH. Incremental learning from noisy data. Mach Learn 1986, 1:317-354.
    • (1986) Mach Learn , vol.1 , pp. 317-354
    • Schlimmer, J.C.1    Granger, R.H.2
  • 19
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer G, Kubat M. Learning in the presence of concept drift and hidden contexts. Mach Learn 1996, 23:69-101. doi:http://dx.doi.org/10.1023/A: 1018046501280.
    • (1996) Mach Learn , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 21
    • 17744362879 scopus 로고    scopus 로고
    • On the complexity of finding emerging patterns
    • Wang L, Zhao H, Dong G, Li J. On the complexity of finding emerging patterns. Theor Compu Sci 2005, 335:15-27. doi:http://dx.doi.org/10.1016/ j.tcs.2004.12.014.
    • (2005) Theor Compu Sci , vol.335 , pp. 15-27
    • Wang, L.1    Zhao, H.2    Dong, G.3    Li, J.4
  • 22
    • 21844446593 scopus 로고    scopus 로고
    • Mining border descriptions of emerging patterns from dataset pairs
    • Dong G, Li J. Mining border descriptions of emerging patterns from dataset pairs. Knowl Inf Syst 2005, 8:178-202. doi:http://dx.doi.org/10.1007/s10115-004-0178-1.
    • (2005) Knowl Inf Syst , vol.8 , pp. 178-202
    • Dong, G.1    Li, J.2
  • 23
    • 53849141859 scopus 로고    scopus 로고
    • Efficient mining of temporal emerging itemsets from data streams
    • Chu CJ, Tseng VS, Liang T. Efficient mining of temporal emerging itemsets from data streams. Expert Syst Appl 2009, 36:885-893. doi:http://dx.doi.org/ 10.1016/j.eswa.2007.10.040.
    • (2009) Expert Syst Appl , vol.36 , pp. 885-893
    • Chu, C.J.1    Tseng, V.S.2    Liang, T.3
  • 26
    • 7444263001 scopus 로고    scopus 로고
    • Condensed representation of emerging patterns
    • 8th Pacific-Asia Conference, PAKDD 2004, Lecture Notes in Computer Science, Berlin, Heidelberg, New York: Springer
    • Soulet A, Crémilleux B, Rioult F. Condensed representation of emerging patterns. Advances in Knowledge Discovery and Data Mining, 8th Pacific-Asia Conference, PAKDD 2004, Lecture Notes in Computer Science, vol. 3056, Berlin, Heidelberg, New York: Springer; 2004, 127-132.
    • (2004) Advances in Knowledge Discovery and Data Mining , vol.3056 , pp. 127-132
    • Soulet, A.1    Crémilleux, B.2    Rioult, F.3
  • 28
    • 85053374465 scopus 로고    scopus 로고
    • Making use of the most expressive jumping emerging patterns for classification
    • Li J, Dong G, Ramamohanarao K. Making use of the most expressive jumping emerging patterns for classification. Knowl Inf Syst 2001, 3:1-29.
    • (2001) Knowl Inf Syst , vol.3 , pp. 1-29
    • Li, J.1    Dong, G.2    Ramamohanarao, K.3
  • 29
    • 0002479811 scopus 로고    scopus 로고
    • Exploration of the power of attributeoriented induction in data mining
    • Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R eds. Menlo Park, CA: AAAI/MIT Press
    • Han J, Fu Y. Exploration of the power of attributeoriented induction in data mining. In: Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI/MIT Press; 1996, 83-115.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 83-115
    • Han, J.1    Fu, Y.2
  • 30
    • 33749652718 scopus 로고    scopus 로고
    • On the relation between rough set reducts and jumping emerging patterns
    • Terlecki P, Walczak K. On the relation between rough set reducts and jumping emerging patterns. Inf Sci 2007, 177:74-83. doi:DOI:10.1016/j.ins. 2006.04.002.
    • (2007) Inf Sci , vol.177 , pp. 74-83
    • Terlecki, P.1    Walczak, K.2
  • 32
    • 23044527560 scopus 로고    scopus 로고
    • Detecting group differences: Mining contrast sets
    • Bay SD, Pazzani MJ. Detecting group differences: Mining contrast sets. Data Min Knowl Discovery 2001, 5:213-246. doi:http://dx.doi.org/10.1023/A: 1011429418057.
    • (2001) Data Min Knowl Discovery , vol.5 , pp. 213-246
    • Bay, S.D.1    Pazzani, M.J.2
  • 34
    • 22144470180 scopus 로고    scopus 로고
    • Mining negative contrast sets from data with discrete attributes
    • Wong TT, Tseng KL. Mining negative contrast sets from data with discrete attributes. Expert Syst Appl 2005, 29:401-407.
    • (2005) Expert Syst Appl , vol.29 , pp. 401-407
    • Wong, T.T.1    Tseng, K.L.2
  • 39
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan JR. Induction of decision trees. Mach Learn 1986, 1:81-106.
    • (1986) Mach Learn , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 40
    • 18444373554 scopus 로고    scopus 로고
    • A survey on tree edit distance and related problems
    • Bille P. A survey on tree edit distance and related problems. Theor Comput Sci 2005, 337:217-239. doi:http://dx.doi.org/10.1016/j.tcs.2004.12.030.
    • (2005) Theor Comput Sci , vol.337 , pp. 217-239
    • Bille, P.1
  • 41
    • 0029309548 scopus 로고
    • Alignment of trees-an alternative to tree edit
    • Jiang T, Wang L, Zhang K. Alignment of trees-an alternative to tree edit. Theor Comput Sci 1995, 143:137-148.
    • (1995) Theor Comput Sci , vol.143 , pp. 137-148
    • Jiang, T.1    Wang, L.2    Zhang, K.3
  • 42
    • 0030344230 scopus 로고    scopus 로고
    • The heuristics of instability in model selection
    • Breiman L. The heuristics of instability in model selection. Ann Stat 1996, 24:2350-2383.
    • (1996) Ann Stat , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 47
    • 0004161991 scopus 로고
    • Algorithms for clustering data
    • NJ: Prentice-Hall, Inc.
    • Jain AK, Dubes RC. Algorithms for clustering data. Upper Saddle River, NJ: Prentice-Hall, Inc.; 1988.
    • (1988) Upper Saddle River
    • Jain, A.K.1    Dubes, R.C.2
  • 52
    • 67049100143 scopus 로고    scopus 로고
    • Redsom: relative density visualization of temporal changes in cluster structures using self-organizing maps
    • Washington, DC: IEEE Computer Society
    • Denny, Williams GJ, Christen P. Redsom: relative density visualization of temporal changes in cluster structures using self-organizing maps. ICDM '08: Proceedings of the 8th IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society; 2008, 173-182. doi:http://dx.doi.org/10.1109/ICDM.2008.34.
    • (2008) ICDM '08: Proceedings of the 8th IEEE International Conference on Data Mining , pp. 173-182
    • Denny, W.G.J.1    Christen, P.2
  • 53
    • 78049429522 scopus 로고    scopus 로고
    • Visualizing temporal cluster changes using relative density selforganizing maps
    • doi: 10.1007/s10115-009-0264-5
    • Denny, Williams GJ, Christen P. Visualizing temporal cluster changes using relative density selforganizing maps. Knowl Inf Syst 2009, 25:281-302. doi: 10.1007/s10115-009-0264-5.
    • (2009) Knowl Inf Syst , vol.25 , pp. 281-302
    • Denny, W.G.J.1    Christen, P.2
  • 55
    • 71349088018 scopus 로고    scopus 로고
    • HE-tree: a framework for detecting changes in clustering structure for categorical data streams
    • Chen K, Liu L. HE-tree: a framework for detecting changes in clustering structure for categorical data streams. VLDB J 2009, 18:1241-1260.
    • (2009) VLDB J , vol.18 , pp. 1241-1260
    • Chen, K.1    Liu, L.2
  • 59
    • 38849098533 scopus 로고    scopus 로고
    • Managing large collections of data mining models
    • Liu B, Tuzhilin A. Managing large collections of data mining models. Commun ACM 2008, 51:85-89. doi:http://doi.acm.org/10.1145/1314215.1314230.
    • (2008) Commun ACM , vol.51 , pp. 85-89
    • Liu, B.1    Tuzhilin, A.2
  • 60
    • 33749319347 scopus 로고    scopus 로고
    • Interestingness measures for data mining: a survey
    • Geng L, Hamilton HJ. Interestingness measures for data mining: a survey. ACM Comput Surv 2006, 38:9. doi:http://doi.acm.org/10.1145/1132960.1132963.
    • (2006) ACM Comput Surv , vol.38 , pp. 9
    • Geng, L.1    Hamilton, H.J.2
  • 62
    • 0004135895 scopus 로고    scopus 로고
    • Boca Raton, London, New York: Chapman and Hall/CRC
    • Chatfield C. Time-Series Forecasting. Boca Raton, London, New York: Chapman and Hall/CRC; 2001.
    • (2001) Time-Series Forecasting
    • Chatfield, C.1
  • 64
    • 9644300959 scopus 로고    scopus 로고
    • Mining changes in association rules: a fuzzy approach
    • Au WH, Chan K. Mining changes in association rules: a fuzzy approach. Fuzzy Sets Syst 2005, 149:87-104.
    • (2005) Fuzzy Sets Syst , vol.149 , pp. 87-104
    • Au, W.H.1    Chan, K.2
  • 68
    • 78149338936 scopus 로고    scopus 로고
    • Analyzing the interestingness of association rules from the temporal dimension
    • Berlin, Heidelberg, New York: IEEE Computer Society
    • Liu B, Ma Y, Lee R. Analyzing the interestingness of association rules from the temporal dimension. Proceedings of the IEEE International Conference on Data Mining. Berlin, Heidelberg, New York: IEEE Computer Society; 2001, 377-384.
    • (2001) Proceedings of the IEEE International Conference on Data Mining , pp. 377-384
    • Liu, B.1    Ma, Y.2    Lee, R.3
  • 75
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen J. Modeling by shortest data description. Automatica 1978, 14:465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 76
    • 43249088014 scopus 로고    scopus 로고
    • Tracking clusters in evolving data streams over sliding windows
    • Zhou A, Cao F, Qian W, Jin C. Tracking clusters in evolving data streams over sliding windows. Knowl Inf Syst 2008, 15:181-214. doi:http://dx.doi.org/ 10.1007/s10115-007-0070-x.
    • (2008) Knowl Inf Syst , vol.15 , pp. 181-214
    • Zhou, A.1    Cao, F.2    Qian, W.3    Jin, C.4
  • 79
    • 77953738183 scopus 로고    scopus 로고
    • Bipartite graphs for monitoring clusters transitions
    • Berlin/Heidelberg: Springer, doi:10.1007/978-3-642-13062-5 12
    • Oliveira M, Gama J. Bipartite graphs for monitoring clusters transitions. Advances in Intelligent Data Analysis IX, Lecture Notes in Computer Science, vol. 6065, Berlin/Heidelberg: Springer; 2010, 114-124. doi:10.1007/978-3-642-13062-5 12.
    • (2010) Advances in Intelligent Data Analysis IX, Lecture Notes in Computer Science , vol.6065 , pp. 114-124
    • Oliveira, M.1    Gama, J.2
  • 80
    • 30244462467 scopus 로고
    • Algorithmic complexity: three NP-hard problems in computational statistics
    • Welch WJ. Algorithmic complexity: three NP-hard problems in computational statistics. J Stat Comput Simul 1982, 15:17-25.
    • (1982) J Stat Comput Simul , vol.15 , pp. 17-25
    • Welch, W.J.1
  • 82
    • 0024896089 scopus 로고
    • Floating approximation in time-varying knowledge bases
    • Kubat M. Floating approximation in time-varying knowledge bases. Pattern Recognit Lett 1989, 10:223-227.
    • (1989) Pattern Recognit Lett , vol.10 , pp. 223-227
    • Kubat, M.1
  • 83
    • 0002896413 scopus 로고
    • Tracking drifting concepts by minimizing disagreements
    • Helmbold DP, Long PM. Tracking drifting concepts by minimizing disagreements. Mach Learn 1994, 14:27-45.
    • (1994) Mach Learn , vol.14 , pp. 27-45
    • Helmbold, D.P.1    Long, P.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.