메뉴 건너뛰기




Volumn 38, Issue 3, 2006, Pages 3-

Interestingness measures for data mining: A survey

Author keywords

Association rules; Classification rules; Interest measures; Interestingness measures; Knowledge discovery; Summaries

Indexed keywords

ASSOCIATION RULES; INTERESTINGNESS MEASURES; KNOWLEDGE DISCOVERY; SUMMARY;

EID: 33749319347     PISSN: 03600300     EISSN: 03600300     Source Type: Journal    
DOI: 10.1145/1132960.1132963     Document Type: Review
Times cited : (942)

References (60)
  • 2
    • 0037282574 scopus 로고    scopus 로고
    • Extracting share frequent itemsets with infrequent subsets
    • 2008
    • BARBER, B. AND HAMILTON, H. J. 2008. Extracting share frequent itemsets with infrequent subsets. Data Mining Knowl. Discovery 7, 2, 153-185.
    • Data Mining Knowl. Discovery , vol.7 , Issue.2 , pp. 153-185
    • Barber, B.1    Hamilton, H.J.2
  • 14
  • 15
    • 84947931008 scopus 로고
    • Overfitting revisited: An information-theoretic approach to simplifying discrimination trees
    • FORSYTH, R. S., CLARKE, D. D., AND WRIGHT, R. L. 1994. Overfitting revisited: An information-theoretic approach to simplifying discrimination trees. J. Exp. Theor, Artif, Intell. 6, 289-302.
    • (1994) J. Exp. Theor, Artif, Intell. , vol.6 , pp. 289-302
    • Forsyth, R.S.1    Clarke, D.D.2    Wright, R.L.3
  • 17
    • 14844361816 scopus 로고    scopus 로고
    • ROC 'n' rule learning: Towards a better understanding of covering algorithms
    • FÜRNKRANZ, J. AND FLACH, P. A. 2005. ROC 'n' rule learning: Towards a better understanding of covering algorithms. Mach. Learn. 58, 1, 39-77.
    • (2005) Mach. Learn. , vol.58 , Issue.1 , pp. 39-77
    • Fürnkranz, J.1    Flach, P.A.2
  • 19
    • 33646260440 scopus 로고    scopus 로고
    • Efficient spatio-temporal data mining with GenSpace graphs
    • HAMILTON, H. J., GENG, L., FINDLATER, L., AND RANDALL, D. J. 2006. Efficient spatio-temporal data mining with GenSpace graphs. J. Appl. Logic 4, 2, 192-214.
    • (2006) J. Appl. Logic , vol.4 , Issue.2 , pp. 192-214
    • Hamilton, H.J.1    Geng, L.2    Findlater, L.3    Randall, D.J.4
  • 22
    • 0004006017 scopus 로고
    • HOAGLIN, D. C., MOSTELLER, F., AND TUKEY, J. W., EDS. Wiley, New York
    • HOAGLIN, D. C., MOSTELLER, F., AND TUKEY, J. W., EDS. 1985. Exploring Data Tables, Trends, and Shapes. Wiley, New York.
    • (1985) Exploring Data Tables, Trends, and Shapes
  • 24
    • 0002192370 scopus 로고    scopus 로고
    • Explora: A multipattern and multistrategy discovery assistant
    • U. M. Fayyad et al., Eds. MIT Press, Cambridge, MA
    • KLOSGEN, W. 1996. Explora: A multipattern and multistrategy discovery assistant. In Advances in Knowledge Discovery and Data Mining, U. M. Fayyad et al., Eds. MIT Press, Cambridge, MA, 249-271.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 249-271
    • Klosgen, W.1
  • 25
    • 0034133513 scopus 로고    scopus 로고
    • Distance based outliers: Algorithms and applications
    • KNORR, E. M., NG, R. T., AND TUCAKOV, V. 2000. Distance based outliers: Algorithms and applications. Int. J. Very Large Databases 8, 237-253.
    • (2000) Int. J. Very Large Databases , vol.8 , pp. 237-253
    • Knorr, E.M.1    Ng, R.T.2    Tucakov, V.3
  • 27
    • 11944264452 scopus 로고    scopus 로고
    • A multicriteria decision aid for interestingness measure selection
    • May 2004 LUSSI Department, GET/ENST, Bretagne, France
    • LENCA, P., MEYER, P., VAILLANT, B., AND LALLICH, S. 2004. A multicriteria decision aid for interestingness measure selection. Tech. Rep. LUSSI-TR-2004-01-EN, May 2004. LUSSI Department, GET/ENST, Bretagne, France.
    • (2004) Tech. Rep. , vol.LUSSI-TR-2004-01-EN
    • Lenca, P.1    Meyer, P.2    Vaillant, B.3    Lallich, S.4
  • 31
    • 0033333282 scopus 로고    scopus 로고
    • Finding interesting patterns using user expectations
    • Liu, B., Hsu, W., MUN, L., AND LEE, H. 1999. Finding interesting patterns using user expectations. IEEE Trans. Knowl. Data Eng. 11, 6, 817-832.
    • (1999) IEEE Trans. Knowl. Data Eng. , vol.11 , Issue.6 , pp. 817-832
    • Liu, B.1    Hsu, W.2    Mun, L.3    Lee, H.4
  • 32
    • 0345929952 scopus 로고    scopus 로고
    • Mining weighted association rules
    • LU, S., HU, H., AND LI, F. 2001. Mining weighted association rules. Intell. Data Anal. 5, 3, 211-225.
    • (2001) Intell. Data Anal. , vol.5 , Issue.3 , pp. 211-225
    • Lu, S.1    Hu, H.2    Li, F.3
  • 33
    • 28544452631 scopus 로고    scopus 로고
    • A survey of interestingness measures for knowledge discovery
    • MCGARHY, K. 2005. A survey of interestingness measures for knowledge discovery. Knowl. Eng. Review 20, 1, 39-61.
    • (2005) Knowl. Eng. Review , vol.20 , Issue.1 , pp. 39-61
    • Mcgarhy, K.1
  • 34
    • 0002431740 scopus 로고    scopus 로고
    • Automatic construction of decision trees from data: A multi-disciplinary survey
    • MURTHY, S. K. 1998. Automatic construction of decision trees from data: A multi-disciplinary survey. Data Mining Knowl. Discovery 2, 4, 345-389.
    • (1998) Data Mining Knowl. Discovery , vol.2 , Issue.4 , pp. 345-389
    • Murthy, S.K.1
  • 38
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical leaning
    • PAGALLO, G. AND HAUSSLER, D. 1990. Boolean feature discovery in empirical leaning. Mach. Learn. B, 1, 71-99.
    • (1990) Mach. Learn. B , vol.1 , pp. 71-99
    • Pagallo, G.1    Haussler, D.2
  • 39
    • 0002877253 scopus 로고
    • Discovery, analysis, and presentation of strong rules
    • G. Piatetsky-Shapiro and W. J. Frawley, Eds. MIT Press, Cambridge, MA
    • PIATETSKST-SHAPIRO, G. 1991. Discovery, analysis, and presentation of strong rules. In Knowledge Discovery in Databases, G. Piatetsky-Shapiro and W. J. Frawley, Eds. MIT Press, Cambridge, MA, 229-248.
    • (1991) Knowledge Discovery in Databases , pp. 229-248
    • Piatetskst-Shapiro, G.1
  • 41
    • 33744584654 scopus 로고
    • Induction of decision trees
    • QUINLAN, J. R. 1986. Induction of decision trees. Mach. Learn. 1, 1, 81-106.
    • (1986) Mach. Learn , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 47
    • 0030380606 scopus 로고    scopus 로고
    • What makes patterns interesting in knowledge discovery systems
    • SILBERSCHATZ, A. AND TUZHILIN, A. 1996. What makes patterns interesting in knowledge discovery systems. IEEE Trans. Knowl. Data Eng. 8, 6, 970-974.
    • (1996) IEEE Trans. Knowl. Data Eng. , vol.8 , Issue.6 , pp. 970-974
    • Silberschatz, A.1    Tuzhilin, A.2
  • 48
    • 0037868122 scopus 로고    scopus 로고
    • Interestingness measures for association patterns: A perspective
    • Department of Computer Science, University of Minnesota
    • TAN, P. AND KUMAR, V. 2000. Interestingness measures for association patterns: A perspective. Tech. Rep. 00-036, Department of Computer Science, University of Minnesota.
    • (2000) Tech. Rep. , Issue.36
    • Tan, P.1    Kumar, V.2
  • 51
    • 0033877395 scopus 로고    scopus 로고
    • Minimum description length induction, Bayesianism, and Kolmogorov complexity
    • VITANYI, P. M. B. AND Li, M. 2000. Minimum description length induction, Bayesianism, and Kolmogorov complexity. IEEE Trans. Inf. Theory 46, 2, 446-464.
    • (2000) IEEE Trans. Inf. Theory , vol.46 , Issue.2 , pp. 446-464
    • Vitanyi, P.M.B.1    Li, M.2
  • 54
    • 70449408968 scopus 로고    scopus 로고
    • A measurement-theoretic foundation of rule interestingness evaluation
    • T. Y. Lin et al., Eds. Springer-Verlag, Berlin
    • YAO, Y. Y., CHEN, Y. H., AND YANG, X. D. 2006. A measurement-theoretic foundation of rule interestingness evaluation. In Foundations and Novel Approaches in Data Mining, T. Y. Lin et al., Eds. Springer-Verlag, Berlin, 41-59.
    • (2006) Foundations and Novel Approaches in Data Mining , pp. 41-59
    • Yao, Y.Y.1    Chen, Y.H.2    Yang, X.D.3
  • 57
    • 33749250911 scopus 로고    scopus 로고
    • Mining itemset utilities from transaction databases
    • YAO, H. AND HAMILTON, H. J. 2006. Mining itemset utilities from transaction databases. Data Knowl. Eng. 59, 3.
    • (2006) Data Knowl. Eng. , vol.59 , pp. 3
    • Yao, H.1    Hamilton, H.J.2
  • 58
    • 33644977630 scopus 로고    scopus 로고
    • On mining summaries by objective measures of interestingness
    • ZBIDI, N., FAIZ, S., AND LIMAM, M. 2006. On mining summaries by objective measures of interestingness. Mach. Learn. 62, 3, 175-198.
    • (2006) Mach. Learn. , vol.62 , Issue.3 , pp. 175-198
    • Zbidi, N.1    Faiz, S.2    Limam, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.