-
1
-
-
42949171875
-
C-TREND: Temporal cluster graphs for identifying and visualizing trends in multiattribute transactional data
-
DOI 10.1109/TKDE.2008.31, 4445669
-
G. Adomavicius and J. Bockstedt. C-trend: Temporal cluster graphs for identifying and visualizing trends in multi-attribute transactional data. IEEE TKDE, 20(6):721-735, 2008. (Pubitemid 351606068)
-
(2008)
IEEE Transactions on Knowledge and Data Engineering
, vol.20
, Issue.6
, pp. 721-735
-
-
Adomavicius, G.1
Bockstedt, J.2
-
2
-
-
85012236181
-
A framework for clustering evolving data streams
-
C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for clustering evolving data streams. VLDB, 29:81-92, 2003.
-
(2003)
VLDB
, vol.29
, pp. 81-92
-
-
Aggarwal, C.1
Han, J.2
Wang, J.3
Yu, P.4
-
3
-
-
33749572698
-
Evolutionary clustering
-
KDD 2006: Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In ACM SIGKDD 2006, pages 554-560, New York, NY, USA, 2006. (Pubitemid 44535554)
-
(2006)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, vol.2006
, pp. 554-560
-
-
Chakrabarti, D.1
Kumar, R.2
Tomkins, A.3
-
5
-
-
26944480755
-
Visualization of cluster changes by comparing Self-Organizing Maps
-
of LNCS, Springer
-
Denny and D. M. Squire. Visualization of cluster changes by comparing Self-Organizing Maps. In PAKDD 2005, volume 3518 of LNCS, pages 410-419. Springer, 2005.
-
(2005)
PAKDD 2005
, vol.3518
, pp. 410-419
-
-
Denny1
Squire, D.M.2
-
6
-
-
44649152313
-
Exploratory hot spot profile analysis using interactive visual drill-down self-organizing maps
-
DOI 10.1007/978-3-540-68125-0-48, Advances in Knowledge Discovery and Data Mining - 12th Pacific-Asia Conference, PAKDD 2008, Proceedings
-
Denny, G. J. Williams, and P. Christen. Exploratory hot spot profile analysis using interactive visual drill-down selforganizing maps. In PAKDD 2008, volume 5012 of LNCS, pages 536-543. Springer, 2008. (Pubitemid 351776345)
-
(2008)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.5012
, pp. 536-543
-
-
Denny1
Williams, G.J.2
Christen, P.3
-
7
-
-
10644220350
-
A framework for measuring differences in data characteristics
-
V. Ganti, J. Gehrke, R. Ramakrishnan, and W.-Y. Loh. A framework for measuring differences in data characteristics. Journal of Computer and System Sciences, 64:542-578, May 2002.
-
(2002)
Journal of Computer and System Sciences
, vol.64
, pp. 542-578
-
-
Ganti, V.1
Gehrke, J.2
Ramakrishnan, R.3
Loh, W.-Y.4
-
9
-
-
44649190568
-
Unsupervised change analysis using supervised learning
-
DOI 10.1007/978-3-540-68125-0-15, Advances in Knowledge Discovery and Data Mining - 12th Pacific-Asia Conference, PAKDD 2008, Proceedings
-
S. Hido, T. Idé, H. Kashima, H. Kubo, and H. Matsuzawa. Unsupervised change analysis using supervised learning. In PAKDD 2008, volume 5012 of LNCS, pages 148-159. Springer, 2008. (Pubitemid 351776314)
-
(2008)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.5012
, pp. 148-159
-
-
Hido, S.1
Ide, T.2
Kashima, H.3
Kubo, H.4
Matsuzawa, H.5
-
10
-
-
0010543609
-
Visualizing the clusters on the Self-Organizing Map
-
Finnish AI Society
-
J. Iivarinen, T. Kohonen, J. Kangas, and S. Kaski. Visualizing the clusters on the Self-Organizing Map. In Conference on AI Research in Finland, volume 12, pages 122-126. Finnish AI Society, 1994.
-
(1994)
Conference on AI Research in Finland
, vol.12
, pp. 122-126
-
-
Iivarinen, J.1
Kohonen, T.2
Kangas, J.3
Kaski, S.4
-
11
-
-
84902156599
-
Comparing self-organizing maps
-
of LNCS Springer, Berlin
-
S. Kaski and K. Lagus. Comparing Self-Organizing Maps. In ICANN'96, Bochum, Germany, volume 1112 of LNCS, pages 809-814. Springer, Berlin, 1996.
-
(1996)
ICANN'96, Bochum, Germany
, vol.1112
, pp. 809-814
-
-
Kaski, S.1
Lagus, K.2
-
13
-
-
78149351008
-
Clustering of time series subsequences is meaningless: Implications for previous and future research
-
Washington DC, USA
-
E. Keogh, J. Lin, and W. Truppel. Clustering of time series subsequences is meaningless: Implications for previous and future research. In IEEE ICDM 2003, page 115, Washington, DC, USA, 2003.
-
(2003)
IEEE ICDM 2003
, pp. 115
-
-
Keogh, E.1
Lin, J.2
Truppel, W.3
-
14
-
-
0020068152
-
Self-organized formation of topologically correct feature maps
-
T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43:59-69, 1982.
-
(1982)
Biological Cybernetics
, vol.43
, pp. 59-69
-
-
Kohonen, T.1
-
16
-
-
18144396167
-
Temporal analysis of clusters of supermarket customers: Conventional vs. interval set approach
-
P. Lingras, M. Hogo, M. Snorek, and C. West. Temporal analysis of clusters of supermarket customers: conventional vs. interval set approach. Inf. Sci., 172(1-2):215-240, 2005.
-
(2005)
Inf. Sci.
, vol.172
, Issue.1-2
, pp. 215-240
-
-
Lingras, P.1
Hogo, M.2
Snorek, M.3
West, C.4
-
17
-
-
0003647182
-
-
Addison- Wesley Longman Publishing, Boston, USA
-
H. Ritter, T. Martinetz, and K. Schulten. Neural Computation and Self-Organizing Maps; An Introduction. Addison- Wesley Longman Publishing, Boston, USA, 1992.
-
(1992)
Neural Computation Self-Organizing Maps; An Introduction
-
-
Ritter, H.1
Martinetz, T.2
Schulten, K.3
-
19
-
-
0010012318
-
Incremental learning from noisy data
-
J. C. Schlimmer and R. H. Granger. Incremental learning from noisy data. Machine Learning, 1(3):317-354,1986.
-
(1986)
Machine Learning
, vol.1
, Issue.3
, pp. 317-354
-
-
Schlimmer, J.C.1
Granger, R.H.2
-
20
-
-
67049142537
-
-
Press release no. 066 July
-
The Treasury - Australian Government. Press release no. 066, July 2006.http://www.treasurer.gov.au/.
-
(2006)
The Treasury - Australian Government
-
-
-
21
-
-
26444474053
-
Designing basic integrated circuits by self-organizing feature maps
-
Nanterre, France, November ARC; SEE, EC2
-
V. Tryba, S. Metzen, and K. Goser. Designing basic integrated circuits by Self-Organizing Feature Maps. In Neuro- N̂imes'89. Intl. Workshop on Neural Networks and their Applications, pages 225-235, Nanterre, France, November 1989. ARC; SEE, EC2.
-
(1989)
In Neuro-N̂imes'89. Intl. Workshop on Neural Networks and their Applications
, pp. 225-235
-
-
Tryba, V.1
Metzen, S.2
Goser, K.3
-
22
-
-
0034187784
-
Clustering of the self-organizing map
-
J. Vesanto and E. Alhoniemi. Clustering of the Self- Organizing Map. IEEE TNN, 11(3):586-600, May 2000.
-
(2000)
IEEE TNN
, vol.11
, Issue.3
, pp. 586-600
-
-
Vesanto, J.1
Alhoniemi, E.2
-
23
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1):69-101, 1996. (Pubitemid 126737384)
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
-
24
-
-
0003675348
-
-
World Bank The World Bank, Washington DC
-
World Bank. World Development Indicators 2003. The World Bank, Washington DC, 2003.
-
(2003)
World Development Indicators 2003
-
-
-
25
-
-
3543125360
-
On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
-
DOI 10.1023/B:DAMI.0000023676.72185.7c
-
K. Yamanishi, J.-I. Takeuchi, G.Williams, and P. Milne. Online unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining and Knowledge Discovery, 8(3):275-300, 2004. (Pubitemid 39019964)
-
(2004)
Data Mining and Knowledge Discovery
, vol.8
, Issue.3
, pp. 275-300
-
-
Yamanishi, K.1
Takeuchi, J.-I.2
Williams, G.3
Milne, P.4
|