메뉴 건너뛰기




Volumn 25, Issue 2, 2010, Pages 281-302

Visualizing temporal cluster changes using Relative Density Self-Organizing Maps

Author keywords

Change analysis; Hot spots analysis; Self Organizing Map; Temporal cluster analysis; Visual data exploration

Indexed keywords

CLUSTER ANALYSIS; CONFORMAL MAPPING; TAXATION; VISUALIZATION;

EID: 78049429522     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-009-0264-5     Document Type: Article
Times cited : (27)

References (41)
  • 1
    • 42949171875 scopus 로고    scopus 로고
    • C-trend: temporal cluster graphs for identifying and visualizing trends in multiattribute transactional data
    • Adomavicius G, Bockstedt J (2008) C-trend: temporal cluster graphs for identifying and visualizing trends in multiattribute transactional data. IEEE TKDE 20(6): 721-735.
    • (2008) IEEE TKDE , vol.20 , Issue.6 , pp. 721-735
    • Adomavicius, G.1    Bockstedt, J.2
  • 2
    • 85012236181 scopus 로고    scopus 로고
    • A framework for clustering evolving data streams
    • Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. VLDB 29: 81-92.
    • (2003) Vldb , vol.29 , pp. 81-92
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 3
    • 78049431925 scopus 로고    scopus 로고
    • On clustering massive text and categorical data streams
    • Aggarwal CC, Yu PS (2009) On clustering massive text and categorical data streams. Knowl Inf Syst. http://www. springerlink. com/content/d508m60uj322rq81/.
    • (2009) Knowl Inf Syst
    • Aggarwal, C.C.1    Yu, P.S.2
  • 8
    • 26944480755 scopus 로고    scopus 로고
    • Visualization of cluster changes by comparing Self-Organizing Maps
    • LNCS. Springer, Berlin
    • Denny, Squire DM (2005) Visualization of cluster changes by comparing Self-Organizing Maps. In: PAKDD 2005, vol 3518, LNCS. Springer, Berlin, pp 410-419.
    • (2005) PAKDD 2005 , vol.3518 , pp. 1410-1419
    • Denny1    Squire, D.M.2
  • 9
    • 44649152313 scopus 로고    scopus 로고
    • Exploratory hot spot profile analysis using interactive visual drill-down self-organizing maps
    • PAKDD 2008, Osaka, Japan, 2008 Proceedings, LNCS. Springer, Berlin
    • Denny, Williams GJ, Christen P (2008a) Exploratory hot spot profile analysis using interactive visual drill-down self-organizing maps. In: Advances in knowledge discovery and data mining, 12th Pacific-Asia conference, PAKDD 2008, Osaka, Japan, 2008 Proceedings, vol 5012, LNCS. Springer, Berlin, pp 536-543.
    • (2008) Advances in knowledge discovery and data mining, 12th Pacific-Asia conference , vol.5012 , pp. 536-543
    • Denny1    Williams, G.J.2    Christen, P.3
  • 10
    • 67049100143 scopus 로고    scopus 로고
    • ReDSOM: relative density visualization of temporal changes in cluster structures using self-organizing maps
    • IEEE Computer Society
    • Denny, Williams GJ, Christen P (2008b) ReDSOM: relative density visualization of temporal changes in cluster structures using self-organizing maps. In: IEEE international conference on data mining (ICDM 2008). IEEE Computer Society, pp 173-182.
    • (2008) IEEE international conference on data mining (ICDM 2008) , pp. 173-182
    • Denny1    Williams, G.J.2    Christen, P.3
  • 11
    • 10644220350 scopus 로고    scopus 로고
    • A framework for measuring differences in data characteristics
    • Ganti V, Gehrke J, Ramakrishnan R, Loh W-Y (2002) A framework for measuring differences in data characteristics. J Comput Syst Sci 64: 542-578.
    • (2002) J Comput Syst Sci , vol.64 , pp. 542-578
    • Ganti, V.1    Gehrke, J.2    Ramakrishnan, R.3    Loh, W.-Y.4
  • 15
    • 0010543609 scopus 로고
    • Visualizing the clusters on the Self-Organizing Map
    • C. Carlsson, T. Järvi, and T. Reponen (Eds.), Helsinki, Finland: Finnish AI Society
    • Iivarinen J, Kohonen T, Kangas J, Kaski S (1994) Visualizing the clusters on the Self-Organizing Map. In: Carlsson C, Järvi T, Reponen T (eds) Conference on AI research in Finland, vol 12. Finnish AI Society, Helsinki, Finland, pp 122-126.
    • (1994) Conference on AI Research in Finland, Vol 12 , pp. 122-126
    • Iivarinen, J.1    Kohonen, T.2    Kangas, J.3    Kaski, S.4
  • 17
    • 57149092639 scopus 로고    scopus 로고
    • Finding cohesive clusters for analyzing knowledge communities
    • Kandylas V, Upham SP, Ungar LH (2008) Finding cohesive clusters for analyzing knowledge communities. Knowl Inf Syst 17(3): 335-354.
    • (2008) Knowl Inf Syst , vol.17 , Issue.3 , pp. 335-354
    • Kandylas, V.1    Upham, S.P.2    Ungar, L.H.3
  • 18
    • 8944226208 scopus 로고
    • Report A24, Helsinki University of Technology, Faculty of Information Technology, Laboratory of Computer and Information Science, Espoo, Finland
    • Kaski S, Kohonen T (1995) Structures of welfare and poverty in the world discovered by the Self-Organizing Map, Report A24, Helsinki University of Technology, Faculty of Information Technology, Laboratory of Computer and Information Science, Espoo, Finland.
    • (1995) Structures of welfare and poverty in the world discovered by the Self-Organizing Map
    • Kaski, S.1    Kohonen, T.2
  • 19
    • 84902156599 scopus 로고    scopus 로고
    • Comparing Self-Organizing Maps
    • C. Malsburgvon der, W. Seelenvon, J. C. Vorbrüggen, and B. Sendhoff (Eds.), Berlin: Springer
    • Kaski S, Lagus K (1996) Comparing Self-Organizing Maps. In: Malsburg C, Seelen W, Vorbrüggen JC, Sendhoff B (eds) ICANN'96, Bochum, Germany, vol 1112, LNCS. Springer, Berlin, pp 809-814.
    • (1996) ICANN'96, Bochum, Germany, Vol 1112, LNCS , pp. 809-814
    • Kaski, S.1    Lagus, K.2
  • 20
    • 0036264672 scopus 로고    scopus 로고
    • Information visualization and visual data mining
    • Keim DA (2002) Information visualization and visual data mining. IEEE Trans Vis Comput Graph 8(1): 1-8.
    • (2002) IEEE Trans Vis Comput Graph , vol.8 , Issue.1 , pp. 1-8
    • Keim, D.A.1
  • 21
    • 78149351008 scopus 로고    scopus 로고
    • Clustering of time series subsequences is meaningless: implications for previous and future research
    • Washington, DC, USA
    • Keogh E, Lin J, Truppel W (2003) Clustering of time series subsequences is meaningless: implications for previous and future research. In: IEEE international conference on data mining (ICDM 2003). Washington, DC, USA, pp 115.
    • (2003) IEEE international conference on data mining (ICDM 2003) , pp. 115
    • Keogh, E.1    Lin, J.2    Truppel, W.3
  • 22
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43: 59-69.
    • (1982) Biol Cybern , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 25
    • 18144396167 scopus 로고    scopus 로고
    • Temporal analysis of clusters of supermarket customers: conventional vs. interval set approach
    • Lingras P, Hogo M, Snorek M, West C (2005) Temporal analysis of clusters of supermarket customers: conventional vs. interval set approach. Inf Sci 172(1-2): 215-240.
    • (2005) Inf Sci , vol.172 , Issue.1-2 , pp. 215-240
    • Lingras, P.1    Hogo, M.2    Snorek, M.3    West, C.4
  • 26
    • 84947593543 scopus 로고    scopus 로고
    • Liu B, Hsu W, Han H-S, Xia Y (2000) Mining changes for real-life applications. In: DaWaK 2000, London, UK, 2000, Proceedings, vol 1874, LNCS. Springer, Berlin, pp 337-346.
  • 29
    • 0036649978 scopus 로고    scopus 로고
    • A survey of temporal knowledge discovery paradigms and methods
    • Roddick JF, Spiliopoulou M (2002) A survey of temporal knowledge discovery paradigms and methods. IEEE TKDE 14(4): 750-767.
    • (2002) IEEE TKDE , vol.14 , Issue.4 , pp. 750-767
    • Roddick, J.F.1    Spiliopoulou, M.2
  • 30
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • Schlimmer JC, Granger RH (1986) Incremental learning from noisy data. Mach Learn 1(3): 317-354.
    • (1986) Mach Learn , vol.1 , Issue.3 , pp. 317-354
    • Schlimmer, J.C.1    Granger, R.H.2
  • 31
    • 84895273076 scopus 로고    scopus 로고
    • The Treasury-Australian Government
    • The Treasury-Australian Government (2006) Press release no. 066'. http://www. treasurer. gov. au/.
    • (2006) Press release no. 066
  • 33
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto J (1999) SOM-based data visualization methods. Intell Data Anal 3(2): 111-126.
    • (1999) Intell Data Anal , vol.3 , Issue.2 , pp. 111-126
    • Vesanto, J.1
  • 34
    • 0034187784 scopus 로고    scopus 로고
    • Clustering of the Self-Organizing Map
    • Vesanto J, Alhoniemi E (2000) Clustering of the Self-Organizing Map. IEEE TNN 11(3): 586-600.
    • (2000) IEEE TNN , vol.11 , Issue.3 , pp. 586-600
    • Vesanto, J.1    Alhoniemi, E.2
  • 36
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1): 69-101.
    • (1996) Mach Learn , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 37
    • 0003675348 scopus 로고    scopus 로고
    • World Bank, The World Bank, Washington, DC
    • World Bank (2003) World development indicators 2003. The World Bank, Washington, DC.
    • (2003) World development indicators 2003
  • 38
    • 3543125360 scopus 로고    scopus 로고
    • On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
    • Yamanishi K, Takeuchi J-I, Williams G, Milne P (2004) On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining Knowl Discov 8(3): 275-300.
    • (2004) Data Mining Knowl Discov , vol.8 , Issue.3 , pp. 275-300
    • Yamanishi, K.1    Takeuchi, J.-I.2    Williams, G.3    Milne, P.4
  • 40
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: an efficient data clustering method for very large databases
    • Jagadish HV, Mumick IS (eds), Montreal, Quebec, Canada, June 4-6, 1996. ACM Press
    • Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. In: Jagadish HV, Mumick IS (eds) Proceedings of the 1996 ACM SIGMOD international conference on management of data, Montreal, Quebec, Canada, June 4-6, 1996. ACM Press, pp 103-114.
    • (1996) Proceedings of the 1996 ACM SIGMOD international conference on management of data , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 41
    • 43249088014 scopus 로고    scopus 로고
    • Tracking clusters in evolving data streams over sliding windows
    • Zhou A, Cao F, Qian W, Jin C (2008) Tracking clusters in evolving data streams over sliding windows. Knowl Inf Syst 15(2): 181-214.
    • (2008) Knowl Inf Syst , vol.15 , Issue.2 , pp. 181-214
    • Zhou, A.1    Cao, F.2    Qian, W.3    Jin, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.