-
1
-
-
42949171875
-
C-trend: temporal cluster graphs for identifying and visualizing trends in multiattribute transactional data
-
Adomavicius G, Bockstedt J (2008) C-trend: temporal cluster graphs for identifying and visualizing trends in multiattribute transactional data. IEEE TKDE 20(6): 721-735.
-
(2008)
IEEE TKDE
, vol.20
, Issue.6
, pp. 721-735
-
-
Adomavicius, G.1
Bockstedt, J.2
-
2
-
-
85012236181
-
A framework for clustering evolving data streams
-
Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. VLDB 29: 81-92.
-
(2003)
Vldb
, vol.29
, pp. 81-92
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
3
-
-
78049431925
-
On clustering massive text and categorical data streams
-
Aggarwal CC, Yu PS (2009) On clustering massive text and categorical data streams. Knowl Inf Syst. http://www. springerlink. com/content/d508m60uj322rq81/.
-
(2009)
Knowl Inf Syst
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
5
-
-
77957873516
-
Rule discovery from time series
-
Das G, Lin K-I, Mannila H, Renganathan G, Smyth P (1998) Rule discovery from time series. In: KDD, pp 16-22.
-
(1998)
KDD
, pp. 16-22
-
-
Das, G.1
Lin, K.-I.2
Mannila, H.3
Renganathan, G.4
Smyth, P.5
-
8
-
-
26944480755
-
Visualization of cluster changes by comparing Self-Organizing Maps
-
LNCS. Springer, Berlin
-
Denny, Squire DM (2005) Visualization of cluster changes by comparing Self-Organizing Maps. In: PAKDD 2005, vol 3518, LNCS. Springer, Berlin, pp 410-419.
-
(2005)
PAKDD 2005
, vol.3518
, pp. 1410-1419
-
-
Denny1
Squire, D.M.2
-
9
-
-
44649152313
-
Exploratory hot spot profile analysis using interactive visual drill-down self-organizing maps
-
PAKDD 2008, Osaka, Japan, 2008 Proceedings, LNCS. Springer, Berlin
-
Denny, Williams GJ, Christen P (2008a) Exploratory hot spot profile analysis using interactive visual drill-down self-organizing maps. In: Advances in knowledge discovery and data mining, 12th Pacific-Asia conference, PAKDD 2008, Osaka, Japan, 2008 Proceedings, vol 5012, LNCS. Springer, Berlin, pp 536-543.
-
(2008)
Advances in knowledge discovery and data mining, 12th Pacific-Asia conference
, vol.5012
, pp. 536-543
-
-
Denny1
Williams, G.J.2
Christen, P.3
-
10
-
-
67049100143
-
ReDSOM: relative density visualization of temporal changes in cluster structures using self-organizing maps
-
IEEE Computer Society
-
Denny, Williams GJ, Christen P (2008b) ReDSOM: relative density visualization of temporal changes in cluster structures using self-organizing maps. In: IEEE international conference on data mining (ICDM 2008). IEEE Computer Society, pp 173-182.
-
(2008)
IEEE international conference on data mining (ICDM 2008)
, pp. 173-182
-
-
Denny1
Williams, G.J.2
Christen, P.3
-
14
-
-
44649190568
-
Unsupervised change analysis using supervised learning
-
Osaka, Japan, 2008 Proceedings, LNCS. Springer, Berlin
-
Hido S, Idé T, Kashima H, Kubo H, Matsuzawa H (2008) Unsupervised change analysis using supervised learning. In: Advances in knowledge discovery and data mining, 12th Pacific-Asia Conference, PAKDD 2008, Osaka, Japan, 2008 Proceedings, vol 5012, LNCS. Springer, Berlin, pp 148-159.
-
(2008)
Advances in knowledge discovery and data mining, 12th Pacific-Asia Conference, PAKDD 2008
, vol.5012
, pp. 148-159
-
-
Hido, S.1
Idé, T.2
Kashima, H.3
Kubo, H.4
Matsuzawa, H.5
-
15
-
-
0010543609
-
Visualizing the clusters on the Self-Organizing Map
-
C. Carlsson, T. Järvi, and T. Reponen (Eds.), Helsinki, Finland: Finnish AI Society
-
Iivarinen J, Kohonen T, Kangas J, Kaski S (1994) Visualizing the clusters on the Self-Organizing Map. In: Carlsson C, Järvi T, Reponen T (eds) Conference on AI research in Finland, vol 12. Finnish AI Society, Helsinki, Finland, pp 122-126.
-
(1994)
Conference on AI Research in Finland, Vol 12
, pp. 122-126
-
-
Iivarinen, J.1
Kohonen, T.2
Kangas, J.3
Kaski, S.4
-
17
-
-
57149092639
-
Finding cohesive clusters for analyzing knowledge communities
-
Kandylas V, Upham SP, Ungar LH (2008) Finding cohesive clusters for analyzing knowledge communities. Knowl Inf Syst 17(3): 335-354.
-
(2008)
Knowl Inf Syst
, vol.17
, Issue.3
, pp. 335-354
-
-
Kandylas, V.1
Upham, S.P.2
Ungar, L.H.3
-
18
-
-
8944226208
-
-
Report A24, Helsinki University of Technology, Faculty of Information Technology, Laboratory of Computer and Information Science, Espoo, Finland
-
Kaski S, Kohonen T (1995) Structures of welfare and poverty in the world discovered by the Self-Organizing Map, Report A24, Helsinki University of Technology, Faculty of Information Technology, Laboratory of Computer and Information Science, Espoo, Finland.
-
(1995)
Structures of welfare and poverty in the world discovered by the Self-Organizing Map
-
-
Kaski, S.1
Kohonen, T.2
-
19
-
-
84902156599
-
Comparing Self-Organizing Maps
-
C. Malsburgvon der, W. Seelenvon, J. C. Vorbrüggen, and B. Sendhoff (Eds.), Berlin: Springer
-
Kaski S, Lagus K (1996) Comparing Self-Organizing Maps. In: Malsburg C, Seelen W, Vorbrüggen JC, Sendhoff B (eds) ICANN'96, Bochum, Germany, vol 1112, LNCS. Springer, Berlin, pp 809-814.
-
(1996)
ICANN'96, Bochum, Germany, Vol 1112, LNCS
, pp. 809-814
-
-
Kaski, S.1
Lagus, K.2
-
20
-
-
0036264672
-
Information visualization and visual data mining
-
Keim DA (2002) Information visualization and visual data mining. IEEE Trans Vis Comput Graph 8(1): 1-8.
-
(2002)
IEEE Trans Vis Comput Graph
, vol.8
, Issue.1
, pp. 1-8
-
-
Keim, D.A.1
-
21
-
-
78149351008
-
Clustering of time series subsequences is meaningless: implications for previous and future research
-
Washington, DC, USA
-
Keogh E, Lin J, Truppel W (2003) Clustering of time series subsequences is meaningless: implications for previous and future research. In: IEEE international conference on data mining (ICDM 2003). Washington, DC, USA, pp 115.
-
(2003)
IEEE international conference on data mining (ICDM 2003)
, pp. 115
-
-
Keogh, E.1
Lin, J.2
Truppel, W.3
-
22
-
-
0020068152
-
Self-organized formation of topologically correct feature maps
-
Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43: 59-69.
-
(1982)
Biol Cybern
, vol.43
, pp. 59-69
-
-
Kohonen, T.1
-
25
-
-
18144396167
-
Temporal analysis of clusters of supermarket customers: conventional vs. interval set approach
-
Lingras P, Hogo M, Snorek M, West C (2005) Temporal analysis of clusters of supermarket customers: conventional vs. interval set approach. Inf Sci 172(1-2): 215-240.
-
(2005)
Inf Sci
, vol.172
, Issue.1-2
, pp. 215-240
-
-
Lingras, P.1
Hogo, M.2
Snorek, M.3
West, C.4
-
26
-
-
84947593543
-
-
Liu B, Hsu W, Han H-S, Xia Y (2000) Mining changes for real-life applications. In: DaWaK 2000, London, UK, 2000, Proceedings, vol 1874, LNCS. Springer, Berlin, pp 337-346.
-
-
-
-
27
-
-
0029405527
-
Rough sets
-
Pawlak Z, Grzymala-Busse J, Slowinski R, Ziarko W (1995) Rough sets. Commun ACM 38(11): 88-95.
-
(1995)
Commun ACM
, vol.38
, Issue.11
, pp. 88-95
-
-
Pawlak, Z.1
Grzymala-Busse, J.2
Slowinski, R.3
Ziarko, W.4
-
29
-
-
0036649978
-
A survey of temporal knowledge discovery paradigms and methods
-
Roddick JF, Spiliopoulou M (2002) A survey of temporal knowledge discovery paradigms and methods. IEEE TKDE 14(4): 750-767.
-
(2002)
IEEE TKDE
, vol.14
, Issue.4
, pp. 750-767
-
-
Roddick, J.F.1
Spiliopoulou, M.2
-
30
-
-
0010012318
-
Incremental learning from noisy data
-
Schlimmer JC, Granger RH (1986) Incremental learning from noisy data. Mach Learn 1(3): 317-354.
-
(1986)
Mach Learn
, vol.1
, Issue.3
, pp. 317-354
-
-
Schlimmer, J.C.1
Granger, R.H.2
-
31
-
-
84895273076
-
-
The Treasury-Australian Government
-
The Treasury-Australian Government (2006) Press release no. 066'. http://www. treasurer. gov. au/.
-
(2006)
Press release no. 066
-
-
-
32
-
-
26444474053
-
Designing basic integrated circuits by Self-Organizing Feature Maps
-
ARC; SEE, EC2, Nanterre, France
-
Tryba V, Metzen S, Goser K (1989) Designing basic integrated circuits by Self-Organizing Feature Maps. In: Neuro-Nîmes'89. International workshop on neural networks and their applications. ARC; SEE, EC2, Nanterre, France, pp 225-235.
-
(1989)
Neuro-Nîmes'89. International workshop on neural networks and their applications
, pp. 225-235
-
-
Tryba, V.1
Metzen, S.2
Goser, K.3
-
33
-
-
38049168357
-
SOM-based data visualization methods
-
Vesanto J (1999) SOM-based data visualization methods. Intell Data Anal 3(2): 111-126.
-
(1999)
Intell Data Anal
, vol.3
, Issue.2
, pp. 111-126
-
-
Vesanto, J.1
-
34
-
-
0034187784
-
Clustering of the Self-Organizing Map
-
Vesanto J, Alhoniemi E (2000) Clustering of the Self-Organizing Map. IEEE TNN 11(3): 586-600.
-
(2000)
IEEE TNN
, vol.11
, Issue.3
, pp. 586-600
-
-
Vesanto, J.1
Alhoniemi, E.2
-
35
-
-
0006519201
-
-
Report A57. Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland
-
Vesanto J, Himberg J, Alhoniemi E, Parhankangas J (2000) SOM toolbox for Matlab 5, Report A57. Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland.
-
(2000)
SOM toolbox for Matlab 5
-
-
Vesanto, J.1
Himberg, J.2
Alhoniemi, E.3
Parhankangas, J.4
-
36
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1): 69-101.
-
(1996)
Mach Learn
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
37
-
-
0003675348
-
-
World Bank, The World Bank, Washington, DC
-
World Bank (2003) World development indicators 2003. The World Bank, Washington, DC.
-
(2003)
World development indicators 2003
-
-
-
38
-
-
3543125360
-
On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
-
Yamanishi K, Takeuchi J-I, Williams G, Milne P (2004) On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining Knowl Discov 8(3): 275-300.
-
(2004)
Data Mining Knowl Discov
, vol.8
, Issue.3
, pp. 275-300
-
-
Yamanishi, K.1
Takeuchi, J.-I.2
Williams, G.3
Milne, P.4
-
40
-
-
0030157145
-
BIRCH: an efficient data clustering method for very large databases
-
Jagadish HV, Mumick IS (eds), Montreal, Quebec, Canada, June 4-6, 1996. ACM Press
-
Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. In: Jagadish HV, Mumick IS (eds) Proceedings of the 1996 ACM SIGMOD international conference on management of data, Montreal, Quebec, Canada, June 4-6, 1996. ACM Press, pp 103-114.
-
(1996)
Proceedings of the 1996 ACM SIGMOD international conference on management of data
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
-
41
-
-
43249088014
-
Tracking clusters in evolving data streams over sliding windows
-
Zhou A, Cao F, Qian W, Jin C (2008) Tracking clusters in evolving data streams over sliding windows. Knowl Inf Syst 15(2): 181-214.
-
(2008)
Knowl Inf Syst
, vol.15
, Issue.2
, pp. 181-214
-
-
Zhou, A.1
Cao, F.2
Qian, W.3
Jin, C.4
|